Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399437

RESUMO

Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.

2.
Metabolites ; 13(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132871

RESUMO

Metabolic syndrome (MetS) is a complex disease that includes metabolic and physiological alterations in various organs such as the heart, pancreas, liver, and brain. Reports indicate that blackberry consumption, such as maqui berry, has a beneficial effect on chronic diseases such as cardiovascular disease, obesity, and diabetes. In the present study, in vivo and in silico studies have been performed to evaluate the molecular mechanisms implied to improve the metabolic parameters of MetS. Fourteen-day administration of maqui berry reduces weight gain, blood fasting glucose, total blood cholesterol, triacylglycerides, insulin resistance, and blood pressure impairment in the diet-induced MetS model in male and female rats. In addition, in the serum of male and female rats, the administration of maqui berry (MB) improved the concentration of MDA, the activity of SOD, and the formation of carbonyls in the group subjected to the diet-induced MetS model. In silico studies revealed that delphinidin and its glycosylated derivatives could be ligands of some metabolic targets such as α-glucosidase, PPAR-α, and PPAR-γ, which are related to MetS parameters. The experimental results obtained in the study suggest that even at low systemic concentrations, anthocyanin glycosides and aglycones could simultaneously act on different targets related to MetS. Therefore, these molecules could be used as coadjuvants in pharmacological interventions or as templates for designing new multitarget molecules to manage patients with MetS.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37895861

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with no curative treatment, and the available therapies aim to modify the course of the disease. It has been demonstrated that extracts of Tagetes lucida have immunomodulatory and neuroprotective effects. This work induced motor damage and neuroinflammation in male BALB/c mice by oral administration of cuprizone (CPZ) (40 mg/kg) for five weeks. In addition, the extracts and coumarins of Tagetes lucida (25 mg/kg) were used to control these damage variables; during the experiment, animals were subject to behavioral tests, and at the end of 5 weeks, mice from each group were used to measure the integrity of biological barriers (brain, kidneys, and spleen) through the extravasation test with blue Evans dye. In another group of animals, the ELISA method measured the brain concentrations of IL-1ß, IL-4, IL-10, and TNF-α. The results presented here allow us to conclude that the extracts and coumarins IC, HN, PE, DF, and SC of Tagetes lucida exert a neuroprotective effect by controlling the motor damage and neuroinflammation by increasing the expression of IL-4 and IL-10 and decreasing IL-1ß and TNF-α; notably, these treatments also protect organs from vascular permeability increase, mainly the BBB, in mice with CPZ-induced experimental encephalomyelitis (VEH * p < 0.05). However, more studies must be carried out to elucidate the molecular mechanisms of the pharmacological effects of this Mexican medicinal plant.

4.
Pharmaceutics ; 15(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765314

RESUMO

The aim of this work was to evaluate the vasorelaxant and antihypertensive effects of a standardized precipitate of the hydroalcoholic extract from Agastache mexicana (PPAm), comprising ursolic acid, oleanolic acid, acacetin, luteolin and tilianin, among others. In the ex vivo experiments, preincubation with L-NAME (nonspecific inhibitor of nitric oxide synthases) reduced the relaxation induced by PPAm; nevertheless, preincubation with indomethacin (nonspecific inhibitor of cyclooxygenases) did not generate any change in the vasorelaxation, and an opposed effect was observed to the contraction generated by CaCl2 addition. Oral administration of 100 mg/kg of PPAm induced a significant acute decrease in diastolic (DBP) and systolic (SBP) blood pressure in spontaneously hypertensive rats, without changes in heart rate. Additionally, PPAm showed a sustained antihypertensive subacute effect on both DBP and SBP for 10 days compared to the control group. On the other hand, human umbilical vein cells treated with 10 µg/mL of PPAm showed a significant reduction (p < 0.05) in intracellular adhesion molecule-1, compared to the control, but not on vascular cell adhesion molecule-1. In conclusion, PPAm induces a significant antihypertensive effect in acute- and subacute-period treatments, due to its direct vasorelaxant action on rat aortic rings through NO production and Ca2+ channel blockade.

5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37111292

RESUMO

Plantago australis Lam. Subsp. hirtella (Kunth) Rahn is a medicinal plant used as a diuretic, anti-inflammatory, antibacterial, throat cancer treatment and for the control of diabetes. P. australis was collected in the state of Morelos, México. The hydroalcoholic extract (HAEPa) of P. australis was obtained by maceration and concentrated in vacuo. Once dry, it was evaluated through an oral glucose tolerance test (OGTT) in normoglycemic mice and in a non-insulin-dependent diabetic mice model. The expression of PPARγ and GLUT-4 mRNA was determined by rt-PCR, and GLUT-4 translocation was confirmed by confocal microscopy. The toxicological studies were conducted in accordance with the guidelines suggested by the OECD, sections 423 and 407, with some modifications. HAEPa significantly decreased glycemia in OGTT curves, as well as in the experimental diabetes model compared to the vehicle group. In vitro tests showed that HAEPa induced an α-glucosidase inhibition and increased PPARγ and GLUT-4 expression in cell culture. The LD50 of HAEPa was greater than 2000 mg/kg, and sub-chronic toxicity studies revealed that 100 mg/kg/day for 28 days did not generate toxicity. Finally, LC-MS analysis led to the identification of verbascoside, caffeic acid and geniposidic acid, and phytochemical approaches allowed for the isolation of ursolic acid, which showed significant PPARγ overexpression and augmented GLUT-4 translocation. In conclusion, HAEPa induced significant antidiabetic action by insulin sensitization through PPARγ/GLUT-4 overexpression.

6.
Life (Basel) ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36362842

RESUMO

BACKGROUND: Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. RESULTS: We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. CONCLUSIONS: Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome.

7.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297813

RESUMO

Tagetes lucida Cav., is a medicinal plant used in Mexico to alleviate different disorders related to alterations of the central nervous system, such as behaviors associated with psychosis. The present work evaluated the effect of different extracts separated from this plant, TlHex, TlEA, TlMet, and TlAq, and of two isolated coumarins, herniarin (HN) and dimethylfraxetin (DF), on haloperidol-induced catalepsy (HAL), and psychotic behaviors provoked with a glutamatergic antagonist, ketamine (KET) on ICR mice. The extracts TlEA, TlAq, and the isolated compounds HN and DF, induced an increment of the cataleptic effect of HAL. Schizophrenia-like symptoms caused by KET were analyzed through the behavior of the animals in the open field (OFT), forced swimming (FST), passive avoidance test (PAT), and social interaction test (SIT). Treatments derived from T. lucida could interact with this substance in all tests except for FST, in which only TlMet blocks its activity. Mainly, TlEA, TlAq, HN, and DF, blocked the effects of KET on stereotyped behavior, hyperlocomotion, cognitive impairment, and detriment in the social interaction of rodents. T. lucida interacted with dopaminergic and glutamatergic systems.

8.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012387

RESUMO

Moonlighting proteins are those capable of performing more than one biochemical or biophysical function within the same polypeptide chain. They have been a recent focus of research due to their potential applications in the health, pharmacological, and nutritional sciences. Among them, some ribosomal proteins involved in assembly and protein translation have also shown other functionalities, including inhibiting infectious bacteria, viruses, parasites, fungi, and tumor cells. Therefore, they may be considered antimicrobial peptides (AMPs). However, information regarding the mechanism of action of ribosomal proteins as AMPs is not yet fully understood. Researchers have suggested that the antimicrobial activity of ribosomal proteins may be associated with an increase in intracellular reactive oxidative species (ROS) in target cells, which, in turn, could affect membrane integrity and cause their inactivation and death. Moreover, the global overuse of antibiotics has resulted in an increase in pathogenic bacteria resistant to common antibiotics. Therefore, AMPs such as ribosomal proteins may have potential applications in the pharmaceutical and food industries in the place of antibiotics. This article provides an overview of the potential roles of ribosomes and AMP ribosomal proteins in conjunction with their potential applications.


Assuntos
Anti-Infecciosos , Proteínas Ribossômicas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Ribossomos
9.
Bioorg Med Chem Lett ; 70: 128804, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598791

RESUMO

In current work, we prepared a series of nine 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones using a two-step pathway. Compounds 1-9 were tested in vitro using a set of three proteins recognized as important targets in diabetes and related diseases: PPARα, PPARγ, and GLUT-4. Compounds 1-3, 5, and 7 showed significant increases in the mRNA expression of PPARγ and GLUT-4, whereas compounds 1-3 did it over PPARα. Compounds 1-3 were identified as a dual PPAR α/γ modulators and were selected for evaluating the in vivo antidiabetic action at 100 mg/kg dose, being orally actives and decreasing blood glucose concentration in a hyperglycemic mice model, as well as reducing the triacylglycerides levels in normolipidemic rats. Docking and molecular dynamics studies were conducted to clarify the dual effect and binding mode of compounds 1-3 on both PPARs. Compounds 2 and 3 exhibited robust in vitro and in vivo efficacy and could be considered dual PPAR modulators with antidiabetic and antidyslipidemic effects.


Assuntos
Hipoglicemiantes , PPAR gama , Animais , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Lipídeos , Camundongos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ratos , Tiazolidinas/farmacologia
10.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35056159

RESUMO

Four isobutyric acids (two nitro and two acetamido derivatives) were prepared in two steps and characterized using spectral analysis. The mRNA concentrations of PPARγ and GLUT-4 (two proteins documented as key diabetes targets) were increased by 3T3-L1 adipocytes treated with compounds 1-4, but an absence of in vitro expression of PPARα was observed. Docking and molecular dynamics studies revealed the plausible interaction between the synthesized compounds and PPARγ. In vivo studies established that compounds 1-4 have antihyperglycemic modes of action associated with insulin sensitization. Nitrocompound 2 was the most promising of the series, being orally active, and one of multiple modes of action could be selective PPARγ modulation due to its extra anchoring with Gln-286. In conclusion, we demonstrated that nitrocompound 2 showed strong in vitro and in vivo effects and can be considered as an experimental antidiabetic candidate.

11.
Nat Prod Res ; 36(4): 1123-1128, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33342288

RESUMO

Agave marmorata Roezl is an endemic succulent specie from the Oaxaca-Puebla area of Mexico. This plant is a medicinal recourse and contain a rich variety of saponins-type compounds with multiples biological effects. Some of them have been shown to be anticancer, antibacterial, or having anti-inflammatory and immunoregulation effects. This paper is the first scientific report to describe the pharmacological activity and chemistry of the saponin smilagenin-3-O-[ß-D-glucopyranosyl (1→2)-ß-D-galactopyranoside] (1), isolated from Agave marmorata Roezl. Saponin (1) displayed immunomodulating activity when assayed on cultured macrophages. It inhibits NO production (EC50 = 5.6 mg/ml, Emax = 101%), as well as NF-κB expression (EC50 = 0.086 mg/ml, Emax = 90%). Using bioinformatic molecular docking, we identified a new smilagenin- PI3K kinase interaction site.


Assuntos
Agave , NF-kappa B/antagonistas & inibidores , Saponinas , Fator de Transcrição AP-1/antagonistas & inibidores , Agave/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Saponinas/química , Saponinas/farmacologia
12.
PeerJ ; 9: e11305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055478

RESUMO

BACKGROUND: High fructose exposure induces metabolic and endocrine responses in adipose tissue. Recent evidence suggests that microRNAs in extracellular vesicles are endocrine signals secreted by adipocytes. Fructose exposure on the secretion of microRNA by tissues and cells is poorly studied. Thus, the aim of this study was to evaluate the effect of fructose exposure on the secretion of selected microRNAs in extracellular vesicles from 3T3-L1 cells and plasma from Wistar rats. METHODS: 3T3-L1 cells were exposed to 550 µM of fructose or standard media for four days, microRNAs levels were determined in extracellular vesicles of supernatants and cells by RT-qPCR. Wistar rats were exposed to either 20% fructose drink or tap water for eight weeks, microRNAs levels were determined in extracellular vesicles of plasma and adipose tissue by RT-qPCR. RESULTS: This study showed that fructose exposure increased the total number of extracellular vesicles released by 3T3-L1 cells (p = 0.0001). The levels of miR-143-5p were increased in extracellular vesicles of 3T3-L1 cells exposed to fructose (p = 0.0286), whereas miR-223-3p levels were reduced (p = 0.0286). Moreover, in plasma-derived extracellular vesicles, miR-143-5p was higher in fructose-fed rats (p = 0.001), whereas miR-223-3p (p = 0.022), miR-342-3p (p = 0.0011), miR-140-5p (p = 0.0129) and miR-146b-5p (p = 0.0245) were lower. CONCLUSION: Fructose exposure modifies the levels of microRNAs in extracellular vesicles in vitro and in vivo. In particular, fructose exposure increases miR-143-5p, while decreases miR-223-3p and miR-342-3p.

13.
Can J Physiol Pharmacol ; 99(9): 935-942, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33596122

RESUMO

α-Amyrin, a natural pentacyclic triterpene, has an antihyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in insulin resistance (IR) and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along with adenosine-monophosphate (AMP) - activated protein kinase (AMPK) and protein kinase B (Akt), are implicated in translocation of glucose transporter 4 (GLUT4); however, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. Our objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt in C2C12 myoblasts. The expression of PPARδ, PPARγ, fatty acid transporter protein (FATP), and GLUT4 was quantified using reverse transcription quantitative PCR and Western blot. α-Amyrin increased these markers along with phospho-AMPK (p-AMPK) but not p-Akt. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, as evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Mioblastos/efeitos dos fármacos , PPAR delta/fisiologia , PPAR gama/fisiologia , Triterpenos Pentacíclicos/farmacologia , Proteínas Quinases Ativadas por AMP/química , Animais , Células Cultivadas , Proteínas de Transporte de Ácido Graxo/fisiologia , Camundongos , Simulação de Acoplamento Molecular , Mioblastos/metabolismo , Triterpenos Pentacíclicos/química , Transporte Proteico/efeitos dos fármacos
14.
J Med Food ; 23(7): 783-792, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721634

RESUMO

In Central and South American traditional medicine, people use Cecropia obtusifolia Bertol (Cecropiaceae) for the treatment of diabetes mellitus. However, its hypoglycemic action mechanism at pancreatic and liver level has been poorly explored. The present research aimed to establish the influence of the aqueous extract of C. obtusifolia, standardized in its content of chlorogenic acid, on insulin secretion in RINm5F cells and over the liver carbohydrates and lipids metabolism, and to determine concomitantly its hepatoprotective effect on mice with streptozotocin-induced diabetes. In RINm5F cells, concentrations 5, 50, 100, and 200 µg/mL of aqueous extract of C. obtusifolia were used to determine [Ca2+]i and insulin secretion. In an acute study, the extract was administered at doses of 500 mg/kg. In another test (subacute), the extract was daily administrated to diabetic mice (200 mg/kg/day) for 30 days. Blood glucose levels and other biochemical parameters were determined, and a liver histological analysis was performed. In RINm5F cells, C. obtusifolia increased [Ca2+]i and insulin secretion, whereas in diabetic mice exhibited acute and subacute hypoglycemic effects. Daily administration of C. obtusifolia to diabetic mice also increased liver glycogen storage and glycogen synthase levels, without apparent changes in gluconeogenesis. Besides, it increased peroxisome proliferator-activated receptor-α (PPAR-α) and long-chain-fatty-acid-CoA ligase 1 (ACSL-1) expression and reduced triglycerides, transaminases (alanine aminotransferase and aspartate aminotransferase), and collagen fibers, modifying anti-inflammatory (adiponectin and interleukin-10) and inflammatory (tumor necrosis factor-α) cytokines in serum. Therefore, the hypoglycemic effect of C. obtusifolia implicates a dual action, promoting insulin secretion, liver glycogen accumulation, and hepatoprotection by decreasing collagen fibers and inflammatory markers, whereas it improves lipid metabolism, due in part to PPAR-α.


Assuntos
Cecropia/química , Diabetes Mellitus Experimental , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/efeitos dos fármacos , Camundongos , Fitoterapia , Substâncias Protetoras/uso terapêutico
15.
Nat Prod Bioprospect ; 9(4): 251-265, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31134518

RESUMO

Ayahuasca (caapi, yajé), is a psychoactive brew from the Amazon Basin region of South America traditionally considered a "master plant." It is prepared as a decoction from Banisteriopsis caapi and Psychotria viridis, which it is thought that it stimulates creative thinking and visual creativity. Native healers of the Orinoco and Amazon basins have used traditionally ayahuasca as a healing tool for multiple purposes, particularly to treat psychological disorders in the patients, with some beneficial effects experimentally and clinically validated. Recently, several syncretic religions, as the "União de Vegetal" (UDV) group in Brazil, have been spread around the world. The use of ayahuasca has been popularized by internet and smart-shops, bringing the psychoactive substance to new highs, emerging new "ayahuasqueros." Ayahuasca has alkaloids as ß-carbolines and dimethyltryptamines, which inhibit the monoamine oxidase and active the 5-HT2A (5-hydroxytryptamine) receptor, respectively, resulting in hallucinations in the users. Ayahuasca induces a psychedelic change in the anteroposterior coupling of the electrophysiological brain oscillations in humans. Traditional ayahuasca beverage is generating pharmacological, commercial and spiritual interest among the scientific community, government people, and different populations worldwide. The goal of this article is to report about the uses, chemistry and biological activities of ayahuasca.

16.
Exp Clin Endocrinol Diabetes ; 127(6): 396-404, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30107623

RESUMO

In addition to oxidative stress due to the increase of free radicals, estrogen deficiency is associated with changes in enzymatic activity, glutathione redox ratio (GSH/GSSG), and the content of oxidative markers such as malondialdehyde. Tibolone, a synthetic steroid, has been used as an elective treatment for the relief of menopausal symptoms. However, the acute effects of hormonal therapy with tibolone on metabolic parameters and oxidative stress markers associated with the first stages of estrogen deficiency are still unknown. The study aimed to evaluate if the acute administration of tibolone reduces oxidative stress in ovariectomized rats fed high-fat-and-fructose diet. Rats were fed a standard diet or a diet consisting of 10% lard-supplemented chow and 20% high-fructose syrup in the drinking water plus tibolone or vehicle for seven days. Weight, cholesterol, triglycerides, and glucose levels, as well as antioxidant enzymes and oxidative stress markers were quantified in the serum of each experimental group. It was observed that seven days of diet and tibolone treatment in the ovariectomized group reduced weight, triglycerides, cholesterol, glucose levels and advanced glycation end products but did not change GSH/GSSG ratio nor the enzymatic activity of superoxide dismutase. Also, both glutathione peroxidase and glutathione reductase activity decreased, as well as malondialdehyde levels. These results suggest that the acute treatment with tibolone prevented the changes in the metabolic parameters analyzed as well as the increase in the levels of malondialdehyde and AGEs induced by ovariectomy and high-fat diet.


Assuntos
Carboidratos da Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Frutose/efeitos adversos , Norpregnenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Feminino , Frutose/farmacologia , Ovariectomia , Ratos , Ratos Sprague-Dawley
17.
Biomed Pharmacother ; 108: 670-678, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245467

RESUMO

In this study, we synthesized five N-Boc-L-tyrosine-based analogues to glitazars. The in vitro effects of compounds 1-5 on protein tyrosine phosphatase 1B (PTP-1B), peroxisome proliferator-activated receptor alpha and gamma (PPARα/γ), glucose transporter type-4 (GLUT-4) and fatty acid transport protein-1 (FATP-1) activation are reported in this paper. Compounds 1 and 3 were the most active in the in vitro PTP-1B inhibition assay, showing IC50s of approximately 44 µM. Treatment of adipocytes with compound 1 increased the mRNA expression of PPARγ and GLUT-4 by 8- and 3-fold, respectively. Moreover, both compounds (1 and 3) also increased the relative mRNA expression of PPARα (by 8-fold) and FATP-1 (by 15-fold). Molecular docking studies were performed in order to elucidate the polypharmacological binding mode of the most active compounds on these targets. Finally, a murine model of hyperglycemia was used to evaluate the in vivo effectiveness of compounds 1 and 3. We found that both compounds are orally active using an exploratory dose of 100 mg/kg, decreasing the blood glucose concentration in an oral glucose tolerance test and a non-insulin-dependent diabetes mellitus murine model. In conclusion, we demonstrated that both molecules showed strong in vitro and in vivo effects and can be considered polypharmacological antidiabetic candidates.


Assuntos
Hipoglicemiantes/farmacologia , Tirosina/farmacologia , Células 3T3 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Modelos Animais de Doenças , Proteínas de Transporte de Ácido Graxo/metabolismo , Teste de Tolerância a Glucose/métodos , Transportador de Glucose Tipo 4/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Camundongos , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , RNA Mensageiro/metabolismo
18.
PeerJ ; 6: e5567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225174

RESUMO

BACKGROUND: Sleep has a fundamental role in the regulation of homeostasis. The aim of this study was to assess the effect of different periods of paradoxical sleep deprivation (PSD) and recovery on serum levels of cytokines and miRNAs related to inflammatory responses. METHODS: Male Wistar rats were submitted to a PSD of 24, 96, or 192 h, or of 192 h followed by 20 days of recovery (192 h PSD+R). The concentrations of corticosterone, cytokines (IL-6, TNF, IL-10, Adiponectin) and miRNAs (miR-146a, miR-155, miR-223, miR-16, miR-126, miR-21) in serum were evaluated. RESULTS: At PSD 24 h a significant increase of IL-6 and decrease of IL-10 were observed. At PSD 96h adiponectin increased. At 192 h of PSD IL-6 increased significantly again, accompanied by a threefold increase of IL-10 and an increase of serum corticosterone. After 20 days of recovery (192 h PSD+R) corticosterone, IL-6 and TNF levels increased significantly, while IL-10 decreased also significantly. Regarding the miRNAs at 24 h of PSD serum miR-146a, miR-155, miR-223, and miR-16 levels all increased. At 96 h of PSD miR-223 decreased. At 192 h of PSD decreases in miR-16 and miR-126 were observed. After recovery serum miR-21 increased and miR-16 decreased. CONCLUSION: PSD induces a dynamic response likely reflecting the induced cellular stress and manifested as variating hormonal and inflammatory responses. Sleep deprivation disturbed corticosterone, cytokine and miRNA levels in serum related to the duration of sleep deprivation, as short-term PSD produced effects similar to those of an acute inflammatory response and long-term PSD induced long-lasting disturbances of biological mediators.

19.
Biomed Pharmacother ; 102: 120-131, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550635

RESUMO

Glycine modulates inflammatory processes mediated by macrophages and adipocytes through decreasing the secretion of TNF-α, IL-6, and leptin, while increasing adiponectin. These effects have been associated with the inactivation of NF-κB in response to TNF-α, across an increase of its inhibitor IκB-α in adipocytes. However, glycine upstream mainly influences the IκB kinase (IKK) complex, a multi-protein kinase complex considered a critical point in regulation of the NF-κB pathway; whether that is responsible for the TNF-α-induced phosphorylation of IkB has not been explored. Additionally, although previous studies have described glycine interactions with specific receptors (GlyR) in different immune system cell types, it is currently unknown whether adipocytes present GlyR. In this research, participation of the IKK-α/ß complex in the inhibition of the TNF-α/NF-κB pathway by glycine was evaluated and associated with the synthesis and secretion of inflammatory cytokines in 3T3-L1 adipocytes. Furthermore, we also explored GlyR expression, its localization on the plasmatic membrane, intracellular calcium concentrations [Ca2+]i and strychnine antagonist action over the GlyR in these cells. Glycine decreased the IKK-α/ß complex and the phosphorylation of NF-κB, diminishing the expression and secretion of IL-6 and TNF-α, but increasing that of adiponectin. GlyR expression and its fluorescence in the plasma membrane were increased in the presence of glycine. In addition, glycine decreased [Ca2+]i; whereas strychnine + glycine treatment inhibited the activation of NF-κB observed with glycine. In conclusion, the reduction of TNF-α and IL-6 and suppression of the TNF-α/NF-κB pathway by glycine may be explained in part by inhibition of the IKK-α/ß complex, with a possible participation of GlyR in 3T3-L1 adipocytes.


Assuntos
Adipócitos/metabolismo , Glicina/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Células 3T3-L1 , Animais , Cálcio/metabolismo , Citocinas/biossíntese , Citocinas/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Fosforilação , Receptores de Glicina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Molecules ; 23(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415496

RESUMO

We have synthesized a small series of five 3-[4-arylmethoxy)phenyl]propanoic acids employing an easy and short synthetic pathway. The compounds were tested in vitro against a set of four protein targets identified as key elements in diabetes: G protein-coupled receptor 40 (GPR40), aldose reductase (AKR1B1), peroxisome proliferator-activated receptor gama (PPARγ) and solute carrier family 2 (facilitated glucose transporter), member 4 (GLUT-4). Compound 1 displayed an EC50 value of 0.075 µM against GPR40 and was an AKR1B1 inhibitor, showing IC50 = 7.4 µM. Compounds 2 and 3 act as slightly AKR1B1 inhibitors, potent GPR40 agonists and showed an increase of 2 to 4-times in the mRNA expression of PPARγ, as well as the GLUT-4 levels. Docking studies were conducted in order to explain the polypharmacological mode of action and the interaction binding mode of the most active molecules on these targets, showing several coincidences with co-crystal ligands. Compounds 1-3 were tested in vivo at an explorative 100 mg/kg dose, being 2 and 3 orally actives, reducing glucose levels in a non-insulin-dependent diabetes mice model. Compounds 2 and 3 displayed robust in vitro potency and in vivo efficacy, and could be considered as promising multitarget antidiabetic candidates. This is the first report of a single molecule with these four polypharmacological target action.


Assuntos
Desenho de Fármacos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Aldeído Redutase/antagonistas & inibidores , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Técnicas de Química Sintética , Transportador de Glucose Tipo 4/agonistas , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hipoglicemiantes/síntese química , Ligantes , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Terapia de Alvo Molecular , PPAR gama/antagonistas & inibidores , PPAR gama/química , Fenilpropionatos/síntese química , Ligação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA