Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 282, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794439

RESUMO

Hematopoiesis is a complex process in which hematopoietic stem cells are differentiated into all mature blood cells (red blood cells, white blood cells, and platelets). Different microRNAs (miRNAs) involve in several steps of this process. Indeed, miRNAs are small single-stranded non-coding RNA molecules, which control gene expression by translational inhibition and mRNA destabilization. Previous studies have revealed that increased or decreased expression of some of these miRNAs by targeting several proto-oncogenes could inhibit or stimulate the myeloid and erythroid lineage commitment, proliferation, and differentiation. During the last decades, the development of molecular and bioinformatics techniques has led to a comprehensive understanding of the role of various miRNAs in hematopoiesis. The critical roles of miRNAs in cell processes such as the cell cycle, apoptosis, and differentiation have been confirmed as well. However, the main contribution of some miRNAs is still unclear. Therefore, it seems undeniable that future studies are required to focus on miRNA activities during various hematopoietic stages and hematological malignancy.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Hematopoese/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica
2.
Vet Res Forum ; 13(3): 393-401, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36320313

RESUMO

Breast cancer (BC) is a significant cause of global mortality in women. This study was aimed to evaluate the immune-activation of malignant BC via the administration of attenuated Mycobacterium obuense. For this purpose, an in vivo model was developed with BALB/c mice. Mice were injected with 2.00 × 106 4T1 cells with breast tumor cell line. Forty-two mice were equally divided into control as well as low dose (0.20 mg 100 µL-1) and high dose (0.50 mg 100 µL-1) groups of M. obuense to investigate gene expression in the antitumor effects of M. obuense. In one group, paclitaxel was administrated as a choice drug in BC treatment. Antitumor manners were characterized by cytotoxicity against tumor target cells, size of the tumor and the expression of some BC metastatic genes together with pathology. The MTT assay demonstrated that different concentrations of both low and a high dose of bacteria did present no cytotoxicity effect on 4T1 cells. According to our findings, M. obuense significantly repressed tumor growth. M. obuense downregulated the expression of collagen type I alpha 1 (COLIA1), cFos, alkaline phosphatase (ALP), claudin 3 (cldn3), and conversely, activated transcription factor 4 (ATF4) and Twist related protein-1 (Twist1). All these alternations induced a decrease in the migratory and invasive capabilities of BC. The result of pathology was indicative of tumor regression in the paclitaxel and HK- M. obuense -recipient group. Thus, it seems most likely that M. obuense might impinge upon cell growth and metastatic behavior of malignant cells exerting anti-tumor activity in BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA