Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731498

RESUMO

Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.


Assuntos
Anti-Inflamatórios , Inflamação , Quempferóis , Quempferóis/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química
2.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474604

RESUMO

Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/ß-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.


Assuntos
Luteolina , Neoplasias , Humanos , Luteolina/farmacologia , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Inflamação/tratamento farmacológico , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Oncology ; 102(4): 299-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37857267

RESUMO

INTRODUCTION: Colorectal cancer (CRC) heritability is determined by the composite relations between inherited variants and environmental factors. In developing countries like India, the incidence rates of CRC are especially increasing. In this study, we have focused on the distribution of the FOXO3 gene polymorphisms among the patients with CRC in North India. METHODS: A case-control study was conducted on 487 CRC patients and 487 age-matched controls. We genotyped single-nucleotide polymorphisms rs2253310 and rs4946936 through polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis and PCR-single-stranded conformation polymorphism procedure followed by sequence detection. RESULTS: A significantly increased risk of CRC was observed for the CC genotype of the rs4946936 polymorphism compared to the TT genotype (p = 0.02; odd ratio [OR] = 1.40, confidence interval [CI] = 1.05-1.87). GT haplotype appeared to be a "risk" haplotype (OR = 1.71, 95% CI = 0.82-2.19), while as other haplotypes CC (OR = 0.83, 95% CI = 0.32-1.54), CT (OR = 0.75, 95% CI = 0.25-1.01), and GC (OR = 0.98, 95% CI = 0.88-1.14) were found to be "protective" for developing CRC. CONCLUSION: This study suggests an association of increased risk of CRC with the rs4946936 polymorphism but not with the rs2253310 polymorphism.


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Perfil Genético , Neoplasias Colorretais/genética , Neoplasias Colorretais/epidemiologia , Genótipo , Proteína Forkhead Box O3/genética
4.
Sci Rep ; 13(1): 16333, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770496

RESUMO

Lung adenocarcinoma (LUAD) is the most common malignant subtype of lung cancer (LC). miR-200 family is one of the prime miR regulators of epithelial-mesenchymal transition (EMT) and worst overall survival (OS) in LC patients. The study aimed to identify and validate the key differentially expressed immune-related genes (DEIRGs) regulated by miR-200 family which may serve for therapeutic aspects in LUAD tumor microenvironment (TME) by affecting cancer progression, invasion, and metastasis. The study identified differentially expressed miRNAs (DEMs) in LUAD, consisting of hsa-miR-200a-3p and hsa-miR-141-5p, respectively. Two highest-degree subnetwork motifs identified from 3-node miRNA FFL were: (i) miR-200a-3p-CX3CR1-SPIB and (ii) miR-141-5p-CXCR1-TBX21. TIMER analysis showed that the expression levels of CX3CR1 and CXCR1 were significantly positively correlated with infiltrating levels of M0-M2 macrophages and natural killer T (NKT) cells. The OS of LUAD patients was significantly affected by lower expression levels of hsa-miR-200a-3p, CX3CR1 and SPIB. These DEIRGs were validated using the human protein atlas (HPA) web server. Further, we validated the regulatory role of hsa-miR-200a-3p in an in-vitro indirect co-culture model using conditioned media from M0, M1 and M2 polarized macrophages (THP-1) and LUAD cell lines (A549 and H1299 cells). The results pointed out the essential role of hsa-miR-200a-3p regulated CX3CL1 and CX3CR1 expression in progression of LC TME. Thus, the study augments a comprehensive understanding and new strategies for LUAD treatment where miR-200 family regulated immune-related genes, especially chemokine receptors, which regulate the metastasis and invasion of LUAD, leading to the worst associated OS.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Adenocarcinoma/genética , Microambiente Tumoral/genética , Receptor 1 de Quimiocina CX3C/genética
5.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298616

RESUMO

Cancer is a major public health concern worldwide and main burden of the healthcare system. Regrettably, most of the currently used cancer treatment approaches such as targeted therapy, chemotherapy, radiotherapy and surgery usually cause adverse complications including hair loss, bone density loss, vomiting, anemia and other complications. However, to overcome these limitations, there is an urgent need to search for the alternative anticancer drugs with better efficacy as well as less adverse complications. Based on the scientific evidences, it is proven that naturally occurring antioxidants present in medicinal plants or their bioactive compounds might constitute a good therapeutic approach in diseases management including cancer. In this regard, myricetin, a polyhydroxy flavonol found in a several types of plants and its role in diseases management as anti-oxidant, anti-inflammatory and hepato-protective has been documented. Moreover, its role in cancer prevention has been noticed through modulation of angiogenesis, inflammation, cell cycle arrest and induction of apoptosis. Furthermore, myricetin plays a significant role in cancer prevention through the inhibition of inflammatory markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2). Moreover, myricetin increases the chemotherapeutic potential of other anticancer drugs through modulation of cell signaling molecules activity. This review elaborates the information of myricetin role in cancer management through modulating of various cell-signaling molecules based on in vivo and in vitro studies. In addition, synergistic effect with currently used anticancer drugs and approaches to improve bioavailability are described. The evidences collected in this review will help different researchers to comprehend the information about its safety aspects, effective dose for different cancers and implication in clinical trials. Moreover, different challenges need to be focused on engineering different nanoformulations of myricetin to overcome the poor bioavailability, loading capacity, targeted delivery and premature release of this compound. Furthermore, some more derivatives of myricetin need to be synthesized to check their anticancer potential.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Transdução de Sinais , Inflamação/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Neoplasias/tratamento farmacológico , Apoptose
6.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37298670

RESUMO

Cancer is one of the main causes of death in all developed and developing countries. Various factors are involved in cancer development and progression, including inflammation and alterations in cellular processes and signaling transduction pathways. Natural compounds have shown health-promoting effects through their antioxidant and anti-inflammatory potential, having an important role in the inhibition of cancer growth. In this regard, formononetin, a type of isoflavone, plays a significant role in disease management through the modulation of inflammation, angiogenesis, cell cycle, and apoptosis. Furthermore, its role in cancer management has been proven through the regulation of different signal transduction pathways, such as the signal transducer and activator of transcription 3 (STAT 3), Phosphatidyl inositol 3 kinase/protein kinase B (PI3K/Akt), and mitogen activating protein kinase (MAPK) signaling pathways. The anticancer potential of formononetin has been reported against various cancer types, such as breast, cervical, head and neck, colon, and ovarian cancers. This review focuses on the role of formononetin in different cancer types through the modulation of various cell signaling pathways. Moreover, synergistic effect with anticancer drugs and methods to improve bioavailability are explained. Thus, detailed studies based on clinical trials are required to explore the potential role of formononetin in cancer prevention and treatment.


Assuntos
Antineoplásicos , Isoflavonas , Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias/tratamento farmacológico
7.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239974

RESUMO

Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Quempferóis/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Inflamação , Apoptose
8.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108214

RESUMO

The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Neoplasias/genética , Neoplasias/terapia , Tecnologia
9.
Life Sci ; 321: 121535, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906255

RESUMO

MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Processamento de Proteína Pós-Traducional , Diferenciação Celular
10.
ACS Omega ; 8(10): 9555-9568, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936296

RESUMO

Despite all epidemiological, clinical, and experimental research efforts, therapeutic concepts in sepsis and sepsis-induced multi-organ dysfunction syndrome (MODS) remain limited and unsatisfactory. Currently, gene expression data sets are widely utilized to discover new biomarkers and therapeutic targets in diseases. In the present study, we analyzed MODS expression profiles (comprising 13 sepsis and 8 control samples) retrieved from NCBI-GEO and found 359 differentially expressed genes (DEGs), among which 170 were downregulated and 189 were upregulated. Next, we employed the weighted gene co-expression network analysis (WGCNA) to establish a MODS-associated gene co-expression network (weighted) and identified representative module genes having an elevated correlation with age. Based on the results, a turquoise module was picked as our hub module. Further, we constructed the PPI network comprising 35 hub module DEGs. The DEGs involved in the highest-confidence PPI network were utilized for collecting pathway and gene ontology (GO) terms using various libraries. Nucleotide di- and triphosphate biosynthesis and interconversion was the most significant pathway. Also, 3 DEGs within our PPI network were involved in the top 5 significantly enriched ontology terms, with hypercortisolism being the most significant term. PRKAR1A was the overlapping gene between top 5 significant pathways and GO terms, respectively. PRKAR1A was considered as a therapeutic target in MODS, and 2992 ligands were screened for binding with PRKAR1A. Among these ligands, 3 molecules based on CDOCKER score (molecular dynamics simulated-based score, which allows us to rank the binding poses according to their quality and to identify the best pose for each system) and crucial interaction with human PRKAR1A coding protein and protein kinase-cyclic nucleotide binding domains (PKA RI alpha CNB-B domain) via active site binding residues, viz. Val283, Val302, Gln304, Val315, Ile327, Ala336, Ala337, Val339, Tyr373, and Asn374, were considered as lead molecules.

11.
Biomimetics (Basel) ; 8(1)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36810372

RESUMO

Physiological barrier function is very difficult to replicate in vitro. This situation leads to poor prediction of candidate drugs in the drug development process due to the lack of preclinical modelling for intestinal function. By using 3D bioprinting, we generated a colitis-like condition model that can evaluate the barrier function of albumin nanoencapsulated anti-inflammatory drugs. Histological characterization demonstrated the manifestation of the disease in 3D-bioprinted Caco-2 and HT-29 constructs. A comparison of proliferation rates in 2D monolayer and 3D-bioprinted models was also carried out. This model is compatible with currently available preclinical assays and can be implemented as an effective tool for efficacy and toxicity prediction in drug development.

12.
Metabolites ; 13(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677055

RESUMO

Diabetes mellitus is a metabolic syndrome characterized by increased glucose levels, oxidative stress, hyperlipidemia, and frequently decreased insulin levels. The current research was carried out for eight consecutive weeks to evaluate the possible reno-protective effects of quercetin (50 mg/kg b.w.) on streptozotocin (STZ) (55 mg/kg b.w.) induced diabetes rat models. Various physiological, biochemical, and histopathological parameters were determined in control, diabetic control, and quercetin-treated diabetic rats. The current findings demonstrated that diabetes control rats showed significantly decreased body weights (198 ± 10 vs. 214 ± 13 g) and insulin levels (0.28 ± 0.04 vs. 1.15 ± 0.05 ng/mL) in comparison to normal control. Besides this, the other parameters showed increased values, such as fasting blood glucose, triglyceride (TG), and total cholesterol levels (99 ± 5 vs. 230 ± 7 mg/dL, 122.9 ± 8.7 vs. 230.7 ± 7.2 mg/dL, 97.34 ± 5.7 vs. 146.3 ± 8 mg/dL) (p < 0.05). In addition, the urea and creatinine levels (39.9 ± 1.8 mg/dL and 102.7 ± 7.8 µmol/L) were also high in diabetes control rats. After 8 weeks of quercetin treatment in STZ-treated animals, body weight, insulin, and fasting blood sugar levels were significantly restored (p < 0.05). The inflammatory markers (TNF-α, IL-6, and IL-1ß) were significantly increased (52.64 ± 2, 95.64 ± 3, 23.3 ± 1.2 pg/mL) and antioxidant enzymes levels (SOD, GST, CAT, and GSH) were significantly decreased (40.3 ± 3 U/mg, 81.9 ± 10 mU/mg, 14.2 ± 2 U/mg, 19.9 ± 2 µmol/g) in diabetic rats. All the parameters in diabetic animals treated with quercetin were restored towards their normal values. Histopathological findings revealed that the quercetin-treated group showed kidney architecture maintenance, reduction of fibrosis, and decreased expression of COX-2 protein. These results determined that quercetin has reno-protective effects, and conclude that quercetin possesses a strong antidiabetic potential and might act as a therapeutic agent in the prevention or delay of diabetes-associated kidney dysfunction.

13.
J Biomol Struct Dyn ; 41(15): 7339-7353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36129011

RESUMO

Fisetin, a natural flavonoid molecule, has been shown to have anticancer properties against various malignancies. In this investigation, we discovered that Fisetin decreased cell viability of both the treated skin cancer cell lines A375 and A431 in a dose and time-dependent manner. The IC50 values ranging from 57.60 µM ± 6.59 to 41.70 µM ± 1.25 in A375 and 48.70 µM ± 5.49 to 33.67 µM ± 1.03 for A431 at the observed time ranging between 24 h to 72 h of treatment remained quite enthusiastic when compared with the normal HEK 293 cells. Fisetin significantly decreased colony formation and migratory ability of the cancer cells. Flow cytometry analysis revealed that Fisetin significantly restricted the progression of skin cancer cells in the G0/G1 phase of the cell cycle and induced cells to undergo apoptosis by increasing reactive oxygen species, decreasing mitochondrial membrane potential, and elevating the count of early and late apoptotic cells. Our in silico studies of molecular docking followed by molecular dynamics simulation found that the interactions and stability of MTH1 protein with Fisetin further showed a considerable binding affinity for MTH1 (-11.4 kcal/mol) and developed stable complexes maintained throughout 100 ns trajectories. Our western blot analysis endorsed this. We found that Fisetin downregulated the expression levels of MTH1 also in addition, it played a crucial role in regulation of apoptotic events in cancer cells. We therefore, conclude that Fisetin anticancer properties against skin cancer cells are mediated through MTH1 inhibition followed by ATM and P53 upregulation.Communicated by Ramaswamy H. Sarma.

14.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558146

RESUMO

Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.


Assuntos
Flavonoides , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antioxidantes/farmacologia , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Apoptose
15.
Biology (Basel) ; 11(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358282

RESUMO

Cancer is the utmost common disease-causing death worldwide, characterized by uncontrollable cell division with the potential of metastasis. Overexpression of the Inhibitors of Apoptosis proteins (IAPs) and autophagy correlates with tumorigenesis, therapeutic resistance, and reoccurrence after anticancer therapies. This study illuminates the role and efficacy of smac mimetic compound BV6 alone and in co-treatment with death ligands such as TRAIL and TNFα in the regulation of cell death mechanisms, i.e., apoptosis and autophagy. In this study, MTT assays, wound healing assays, and cellular and nuclear morphological studies were done. DAPI staining, AO/EtBr staining and AnnexinV/PI FACS was done to study the apoptosis. The expression of IAPs and autophagy biomarkers was analyzed using Real time-PCR and western blotting. Meanwhile, TEM demonstrated autophagy and cellular autophagic vacuoles in response to the BV6. The result shows a promising anti-cancer effect of BV6 alone as well as in combinational treatment with TRAIL and TNFα, compared to the lone treatment of TRAIL and TNFα in both breast cancer cell lines. The smac mimetic compound might provide an alternative combinational therapy with conventional anticancer therapies to tackle their inefficiency at the advanced stage of cancer, cancer resistance, and reoccurrence. Also, IAPs and autophagic proteins could act as potent target molecules for the development of novel anti-cancer drugs in pathogenesis and the betterment of regimens for cancer.

16.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144625

RESUMO

Cancer is the most commonly diagnosed type of disease and a major cause of death worldwide. Despite advancement in various treatment modules, there has been little improvement in survival rates and side effects associated with this disease. Medicinal plants or their bioactive compounds have been extensively studied for their anticancer potential. Novel drugs based on natural products are urgently needed to manage cancer through attenuation of different cell signaling pathways. In this regard, berberine is a bioactive alkaloid that is found in variety of plants, and an inverse association has been revealed between its consumption and cancer. Berberine exhibits an anticancer role through scavenging free radicals, induction of apoptosis, cell cycle arrest, inhibition of angiogenesis, inflammation, PI3K/AKT/mammalian target of rapamycin (mTOR), Wnt/ß-catenin, and the MAPK/ERK signaling pathway. In addition, synergistic effects of berberine with anticancer drugs or natural compounds have been proven in several cancers. This review outlines the anticancer effects and mechanisms of action of berberine in different cancers through modulation of various cell signaling pathways. Moreover, the recent developments in the drug delivery systems and synergistic effect of berberine are explained.


Assuntos
Antineoplásicos , Berberina , Produtos Biológicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/metabolismo
17.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144783

RESUMO

Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.


Assuntos
Apigenina , Neoplasias , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose , Hormônios/farmacologia , Humanos , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Sci Rep ; 12(1): 11963, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831411

RESUMO

Sepsis has affected millions of populations of all age groups, locations, and sexes worldwide. Immune systems, either innate or adaptive are dysregulated due to the infection. Various biomarkers are present to date, still sepsis is a primary cause of mortality. Globally, post-operative body infections can cause sepsis and septic shock in ICU. Abnormal antigen presentation to T-cells leads to a dysregulated immune system. miRNAs are sparkly evolved as biomarkers due to their high sensitivity and efficiency. In this work, we analyzed high-throughput mRNA data collected from Gene Expression Omnibus (GEO) and linked it to significant miRNAs and TFs using a network-based approach. Protein-protein interaction (PPI) network was constructed using sepsis-specific differentially expressed genes (DEGs) followed by enrichment analyses and hub module detection. Sepsis-linked decrease transcription of the classical HLA gene such as HLA-DPB1 and its interplay with miR-let-7b-5p and transcription factor SPIB was observed. This study helped to provide innovative targets for sepsis.


Assuntos
MicroRNAs/genética , Sepse , Biomarcadores , Biologia Computacional , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Cadeias beta de HLA-DP , Humanos , MicroRNAs/metabolismo , Sepse/genética , Fatores de Transcrição/genética , Transcriptoma
19.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566016

RESUMO

Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico
20.
Biology (Basel) ; 11(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35053077

RESUMO

This study investigated the health-promoting activities of methanolic extracts of Ajwa date seed and fruit pulp extracts through in vitro studies. These studies confirmed potential antioxidant, anti-hemolytic, anti-proteolytic, and anti-bacterial activities associated with Ajwa dates. The EC50 values of fruit pulp and seed extracts in methanol were reported to be 1580.35 ± 0.37 and 1272.68 ± 0.27 µg/mL, respectively, in the DPPH test. The maximum percentage of hydrogen peroxide-reducing activity was 71.3 and 65.38% for both extracts at 600 µg/mL. Fruit pulp and seed extracts inhibited heat-induced BSA denaturation by 68.11 and 60.308%, heat-induced hemolysis by 63.84% and 58.10%, and hypersalinity-induced hemolysis by 61.71% and 57.27%, and showed the maximum anti-proteinase potential of 56.8 and 51.31% at 600 µg/mL, respectively. Seed and fruit pulp inhibited heat-induced egg albumin denaturation at the same concentration by 44.31 and 50.84%, respectively. Ajwa seed showed minimum browning intensity by 63.2%, percent aggregation index by 64.2%, and amyloid structure by 63.8% at 600 µg/mL. At 100 mg/mL, Ajwa seed extract exhibited good antibacterial activity. Molecular docking analysis showed that ten active constituents of Ajwa seeds bind with the critical antioxidant enzymes, catalase (1DGH) and superoxide dismutase (5YTU). The functional residues involved in such interactions include Arg72, Ala357, and Leu144 in 1DGH, and Gly37, Pro13, and Asp11 in 5YTU. Hence, Ajwa dates can be used to develop a suitable alternative therapy in various diseases, including diabetes and possibly COVID-19-associated complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA