Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nat Prod Res ; 33(23): 3432-3435, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29781298

RESUMO

The inhibitory activity of a Bauhinia forficata tincture (TBF) was investigated against oral microorganism's strains and against a mature oral biofilm. The viability of planktonic cells was analyzed by Minimal Inhibitory and Microbicidal concentrations of TBF. Salivary samples from health volunteers were collected and mixed to form a saliva pool. An aliquot from this pool were seeded on membranes, which were incubated to form biofilm (48 h). The biofilm was treated according to the groups: G1-Chlorhexidine 0.12%; G2-TBF at the highest MMC; G3-Ethanol at the TBF highest MMC. G4 was the growth control. Streptococcus spp. (S) and total microorganisms (TM) from biofilm were counted. TBF was microbicidal against all oral pathogens. G2 was able to reduce the counts of S and TM from biofilm compared to G3 and G4, but less than G1 (p < 0.05). TBF is able to reduce the microbial levels from a mature oral biofilm.


Assuntos
Anti-Infecciosos/isolamento & purificação , Bauhinia/química , Biofilmes/efeitos dos fármacos , Saliva/microbiologia , Anti-Infecciosos/química , Clorexidina/farmacologia , Voluntários Saudáveis , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta/química
2.
Braz. j. microbiol ; 49(1): 200-206, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889189

RESUMO

ABSTRACT Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.


Assuntos
Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Infecções por Bacteroides/microbiologia , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/isolamento & purificação , Bacteroides fragilis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Testes de Sensibilidade Microbiana , Proteínas Repressoras/metabolismo
3.
Braz J Microbiol ; 49(1): 200-206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28847541

RESUMO

Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/isolamento & purificação , Bacteroides fragilis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Testes de Sensibilidade Microbiana , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA