Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Andrology ; 12(5): 1024-1037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38497291

RESUMO

BACKGROUND: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis. OBJECTIVES: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice. MATERIAL AND METHODS: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted. RESULTS: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively. CONCLUSION: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.


Assuntos
Epididimite , Lipopolissacarídeos , Transdução de Sinais , Ácidos Teicoicos , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Masculino , Epididimite/genética , Epididimite/metabolismo , Epididimite/microbiologia , Camundongos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Ácidos Teicoicos/farmacologia , Escherichia coli Uropatogênica , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/genética , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Epididimo/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Doença Aguda
2.
Nord J Psychiatry ; 76(7): 559-564, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36189960

RESUMO

INTRODUCTION: Nuclear distribution element like-1 (Ndel1) is a cytosolic oligopeptidase, which was suggested as a potential biomarker of aberrant neurodevelopment and early stage of schizophrenia (SCZ). The involvement of Ndel1 in neurite outgrowth, neuronal migration and neurodevelopment was demonstrated. Moreover, Ndel1 cleaves neuropeptides, including the endogenous antipsychotic peptide neurotensin, and lower Ndel1 activity was reported in SCZ patients compared with healthy controls (HCs). Changes in brain-derived neurotrophic factor (BDNF) and inflammatory cytokines levels were also implicated in SCZ. OBJECTIVE: This preliminary study aimed to investigate the interactions between these immune and neurodevelopmental/neurotrophic biomarkers, namely BDNF and the recently identified SCZ biomarker Ndel1. RESULTS: We observed lower Ndel1 activity and IL-4 levels, and higher BDNF levels, in plasma of SCZ (N = 23) compared with HCs (N = 29). Interestingly, significant correlation between Ndel1 activity and IL-4 levels was observed in SCZ, while no correlation with any other evaluated interleukins (namely IL-2, IL-8, IL-10 and IL-17A) or BDNF levels was noticed. CONCLUSION: Although this hypothesis needs to be further explored for a better understanding of the mechanisms by which these altered pathways are associated to each other in SCZ, we suggest that Ndel1 and the inflammatory marker IL-4 are directly correlated.


Assuntos
Antipsicóticos , Neuropeptídeos , Esquizofrenia , Antipsicóticos/uso terapêutico , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo , Citocinas , Humanos , Interleucina-10/uso terapêutico , Interleucina-17/uso terapêutico , Interleucina-2/uso terapêutico , Interleucina-4/uso terapêutico , Interleucina-8/uso terapêutico , Neurotensina/uso terapêutico , Peptídeos/uso terapêutico , Esquizofrenia/tratamento farmacológico
3.
Neurochem Int ; 147: 105047, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872680

RESUMO

Mammalian nuclear distribution genes encode proteins with essential roles in neuronal migration and brain formation during embryogenesis. The implication of human nuclear distribution genes, namely nudC and NDE1 (Nuclear Distribution Element 1)/NDEL1 (Nuclear Distribution Element-Like 1), in psychiatric disorders including schizophrenia and bipolar disorder, has been recently described. The partial loss of NDEL1 expression results in neuronal migration defects, while ndel1 null knockout (KO) leads to early embryonic lethality in mice. On the other hand, loss-of-function of the orthologs of nuclear distribution element genes (nud) in Caenorhabditis elegans renders viable worms and influences behavioral endophenotypes associated with dopaminergic and serotoninergic pathways. In the present work, we evaluated the role of nud genes in monoamine levels at baseline and after the treatment with typical or atypical antipsychotics. Dopamine, serotonin and octopamine levels were significantly lower in homozygous loss-of-function mutant worms KO for nud genes compared with wild-type (WT) C. elegans at baseline. While treatment with antipsychotics determined significant differences in monoamine levels in WT, the nud KO mutant worms appear to respond differently to the treatment. According to the best of our knowledge, we are the first to report the influence of nud genes in the monoamine levels changes in response to antipsychotic drugs, ultimately placing the nuclear distribution genes family at the cornerstone of pathways involved in the modulation of monoamines in response to different classes of antipsychotic drugs.


Assuntos
Antipsicóticos/farmacologia , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Mutação/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Biol Reprod ; 104(1): 144-158, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33034631

RESUMO

Whey-acidic protein four-disulfide core domain (WFDC) genes display putative roles in innate immunity and fertility. In mice, a locus on chromosome 2 contains 5 and 11 Wfdc genes in its centromeric and telomeric subloci, respectively. Although Wfdc genes are highly expressed in the epididymis, their contributions to epididymal function remain elusive. Here, we investigated whether Wfdc genes are regulated in response to lipopolysaccharide (LPS)-induced epididymitis, an inflammatory condition that impairs male fertility. We induced epididymitis in mice via (i) interstitial LPS injection into epididymal initial segment and (ii) intravasal LPS injection into the vas deferens towards cauda epididymis. Interstitial and intravasal LPS induced a differential upregulation of inflammatory mediators (interleukin 1 beta, interleukin 6, tumor necrosis factor, interferon gamma, and interleukin 10) in the initial segment and cauda epididymis within 72 h post-treatment. These changes were accompanied by a time-dependent endotoxin clearance from the epididymis. In the initial segment, interstitial LPS upregulated all centromeric (Slpi, Wfdc5, Wfdc12, Wfdc15a, and Wfdc15b) and five telomeric (Wfdc2, Wfdc3, Wfdc6b, Wfdc10, and Wfdc13) Wfdc transcripts at 24 and 72 h. In the cauda epididymis, intravasal LPS upregulated Wfdc5 and Wfdc2 transcripts at 24 h, followed by a downregulation of Wfdc15b and three telomeric (Wfdc6a, Wfdc11, and Wfdc16) gene transcripts at 72 h. Pharmacological inhibition of nuclear factor kappa B activation prevented LPS-induced upregulation of centromeric and telomeric Wfdc genes depending on the epididymal region. We show that LPS-induced inflammation differentially regulated the Wfdc locus in the proximal and distal epididymis, indicating region-specific roles for the Wfdc family in innate immune responses during epididymitis.


Assuntos
Epididimo/metabolismo , Epididimite/genética , Regulação da Expressão Gênica , Proteínas/genética , Animais , Epididimite/induzido quimicamente , Epididimite/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , NF-kappa B/metabolismo , Proteínas/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
5.
Neurosci Biobehav Rev ; 108: 679-693, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794779

RESUMO

Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.


Assuntos
Neuropeptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Esquizofrenia/metabolismo , Animais , Humanos , Neuropeptídeos/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/enzimologia
6.
Brain Behav Immun Health ; 2: 100034, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377429

RESUMO

Mental disorders (MDs) are highly prevalent and potentially debilitating complex disorders which causes remain elusive. Looking into deeper aspects of etiology or pathophysiology underlying these diseases would be highly beneficial, as the scarce knowledge in mechanistic and molecular pathways certainly represents an important limitation. Association between MDs and inflammation/neuroinflammation has been widely discussed and accepted by many, as high levels of pro-inflammatory cytokines were reported in patients with several MDs, such as schizophrenia (SCZ), bipolar disorder (BD) and major depression disorder (MDD), among others. Correlation of pro-inflammatory markers with symptoms intensity was also reported. However, the mechanisms underlying the inflammatory dysfunctions observed in MDs are not fully understood yet. In this context, microglial dysfunction has recently emerged as a possible pivotal player, as during the neuroinflammatory response, microglia can be over-activated, and excessive production of pro-inflammatory cytokines, which can modify the kynurenine and glutamate signaling, is reported. Moreover, microglial activation also results in increased astrocyte activity and consequent glutamate release, which are both toxic to the Central Nervous System (CNS). Also, as a result of increased microglial activation in MDs, products of the kynurenine pathway were shown to be changed, influencing then the dopaminergic, serotonergic, and glutamatergic signaling pathways. Therefore, in the present review, we aim to discuss how neuroinflammation impacts on glutamate and kynurenine signaling pathways, and how they can consequently influence the monoaminergic signaling. The consequent association with MDs main symptoms is also discussed. As such, this work aims to contribute to the field by providing insights into these alternative pathways and by shedding light on potential targets that could improve the strategies for pharmacological intervention and/or treatment protocols to combat the main pharmacologically unmatched symptoms of MDs, as the SCZ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA