Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 110(1-1): 014130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39160970

RESUMO

We present a mean-field solution of the dynamics of a Greenberg-Hastings neural network with both excitatory and inhibitory units. We analyze the dynamical phase transitions that appear in the stationary state as the model parameters are varied. Analytical solutions are compared with numerical simulations of the microscopic model defined on a fully connected network. We found that the stationary state of this system exhibits a first-order dynamical phase transition (with the associated hysteresis) when the fraction of inhibitory units f is smaller than some critical value f_{t}≲1/2, even for a finite system. Moreover, any solution for f<1/2 can be mapped to a solution for purely excitatory systems (f=0). In finite systems, when the system is dominated by inhibition (f>f_{t}), the first-order transition is replaced by a pseudocritical one, namely a continuous crossover between regions of low and high activity that resembles the finite size behavior of a continuous phase transition order parameter. However, in the thermodynamic limit (i.e., infinite-system-size limit), we found that f_{t}→1/2 and the activity for the inhibition dominated case (f≥f_{t}) becomes negligible for any value of the parameters, while the first-order transition between low- and high-activity phases for f

2.
Phys Rev E ; 106(5-1): 054140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559505

RESUMO

While the support for the relevance of critical dynamics to brain function is increasing, there is much less agreement on the exact nature of the advocated critical point. Thus, a considerable number of theoretical efforts are currently concentrated on which mechanisms and what type(s) of transition can be exhibited by neuronal network models. In that direction, the present work describes the effect of incorporating a fraction of inhibitory neurons on the collective dynamics. As we show, this results in the appearance of a tricritical point for highly connected networks and a nonzero fraction of inhibitory neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA