Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(9): e1009870, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473801

RESUMO

As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.


Assuntos
Aedes/virologia , Infecções por Arbovirus , Dieta , Insetos Vetores/virologia , Intestinos/imunologia , Aedes/imunologia , Animais , Arbovírus , Insetos Vetores/imunologia , Açúcares
2.
PLoS Pathog ; 16(12): e1009134, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351855

RESUMO

Mosquitoes are responsible for the transmission of many clinically important arboviruses that cause significant levels of annual mortality and socioeconomic health burden worldwide. Deciphering the mechanisms by which mosquitoes modulate arbovirus infection is crucial to understand how viral-host interactions promote vector transmission and human disease. SUMOylation is a post-translational modification that leads to the covalent attachment of the Small Ubiquitin-like MOdifier (SUMO) protein to host factors, which in turn can modulate their stability, interaction networks, sub-cellular localisation, and biochemical function. While the SUMOylation pathway is known to play a key role in the regulation of host immune defences to virus infection in humans, the importance of this pathway during arbovirus infection in mosquito vectors, such as Aedes aegypti (Ae. aegypti), remains unknown. Here we characterise the sequence, structure, biochemical properties, and tissue-specific expression profiles of component proteins of the Ae. aegypti SUMOylation pathway. We demonstrate significant biochemical differences between Ae. aegypti and Homo sapiens SUMOylation pathways and identify cell-type specific patterns of SUMO expression in Ae. aegypti tissues known to support arbovirus replication. Importantly, depletion of core SUMOylation effector proteins (SUMO, Ubc9 and PIAS) in Ae. aegypti cells led to enhanced levels of arbovirus replication from three different families; Zika (Flaviviridae), Semliki Forest (Togaviridae), and Bunyamwera (Bunyaviridae) viruses. Our findings identify an important role for mosquito SUMOylation in the cellular restriction of arboviruses that may directly influence vector competence and transmission of clinically important arboviruses.


Assuntos
Aedes/virologia , Arbovírus/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Mosquitos Vetores/virologia , Replicação Viral/fisiologia , Animais , Infecções por Arbovirus/transmissão , Humanos , Sumoilação
3.
mSphere ; 5(2)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269152

RESUMO

Arboviruses are pathogens of humans and animals. A better understanding of the interactions between these pathogens and the arthropod vectors, such as mosquitoes, that transmit them is necessary to develop novel control measures. A major antiviral pathway in the mosquito vector is the exogenous small interfering RNA (exo-siRNA) pathway, which is induced by arbovirus-derived double-stranded RNA in infected cells. Although recent work has shown the key role played by Argonaute-2 (Ago-2) and Dicer-2 (Dcr-2) in this pathway, the regulatory mechanisms that govern these pathways have not been studied in mosquitoes. Here, we show that the Domino ortholog p400 has antiviral activity against the alphavirus Semliki Forest virus (Togaviridae) both in Aedes aegypti-derived cells and in vivo Antiviral activity of p400 was also demonstrated against chikungunya virus (Togaviridae) and Bunyamwera virus (Peribunyaviridae) but not Zika virus (Flaviviridae). p400 was found to be expressed across mosquito tissues and regulated ago-2 but not dcr-2 transcript levels in A. aegypti mosquitoes. These findings provide novel insights into the regulation of an important aedine exo-siRNA pathway effector protein, Ago-2, by the Domino ortholog p400. They add functional insights to previous observations of this protein's antiviral and RNA interference regulatory activities in Drosophila melanogasterIMPORTANCE Female Aedes aegypti mosquitoes are vectors of human-infecting arthropod-borne viruses (arboviruses). In recent decades, the incidence of arthropod-borne viral infections has grown dramatically. Vector competence is influenced by many factors, including the mosquito's antiviral defenses. The exogenous small interfering RNA (siRNA) pathway is a major antiviral response restricting arboviruses in mosquitoes. While the roles of the effectors of this pathway, Argonaute-2 and Dicer-2 are well characterized, nothing is known about its regulation in mosquitoes. In this study, we demonstrate that A. aegypti p400, whose ortholog Domino in Drosophila melanogaster is a chromatin-remodeling ATPase member of the Tip60 complex, regulates siRNA pathway activity and controls ago-2 expression levels. In addition, we found p400 to have antiviral activity against different arboviruses. Therefore, our study provides new insights into the regulation of the antiviral response in A. aegypti mosquitoes.


Assuntos
Aedes/genética , Proteínas Argonautas/genética , Proteínas de Insetos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Aedes/virologia , Animais , Arbovírus/fisiologia , Feminino , Regulação da Expressão Gênica , Mosquitos Vetores/genética , Mosquitos Vetores/virologia
4.
Parasit Vectors ; 13(1): 31, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941536

RESUMO

BACKGROUND: Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and non-host-seeking adults, which have been poorly correlated with human disease incidence. Exposure to mosquito-borne diseases can be more directly estimated using human landing catches (HLC), although this method is not recommended for Aedes-borne arboviruses. We evaluated a new method previously tested with malaria vectors, the mosquito electrocuting trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes on people. Aims were to (i) compare the MET to the BG-sentinel (BGS) trap gold standard approach for sampling host-seeking Aedes vectors; and (ii) characterize the diel activity of Aedes vectors and their association with microclimatic conditions. METHODS: The study was conducted over 12 days in Quinindé (Ecuador) in May 2017. Mosquito sampling stations were set up in the peridomestic area of four houses. On each day of sampling, each house was allocated either a MET or a BGS trap, which were rotated amongst the four houses daily in a Latin square design. Mosquito abundance and microclimatic conditions were recorded hourly at each sampling station between 7:00-19:00 h to assess variation between vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females were tested for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses. RESULTS: A higher number of Ae. aegypti females were found in MET than in BGS collections, although no statistically significant differences in mean Ae. aegypti abundance between trapping methods were found. Both trapping methods indicated female Ae. aegypti had bimodal patterns of host-seeking, being highest during early morning and late afternoon hours. Mean Ae. aegypti daily abundance was negatively associated with daily temperature. No infection by ZIKV, DENV or CHIKV was detected in any Aedes mosquitoes caught by either trapping method. CONCLUSION: We conclude the MET performs at least as well as the BGS standard and offers the additional advantage of direct measurement of per capita human-biting rates. If detection of arboviruses can be confirmed in MET-collected Aedes in future studies, this surveillance method could provide a valuable tool for surveillance and prediction on human arboviral exposure risk.


Assuntos
Aedes/fisiologia , Infecções por Arbovirus/transmissão , Flavivirus/isolamento & purificação , Mordeduras e Picadas de Insetos/epidemiologia , Mosquitos Vetores/fisiologia , Adulto , Aedes/virologia , Animais , Febre de Chikungunya/transmissão , Vírus Chikungunya/isolamento & purificação , Culex/fisiologia , Dengue/transmissão , Vírus da Dengue/isolamento & purificação , Equador/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores/virologia , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA