Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38400829

RESUMO

The M-line of striated muscle is a complex structure that anchors myosin-containing thick filaments and also participates in signaling and proteostasis. While the physical associations among many M-line components have been defined, the mechanism of thick filament attachment is not completely understood. In Caenorhabditis elegans, myosin A is essential for viability and forms the site of M-line attachment at the center of the filament, whereas myosin B forms the filament arms. Using a mutant myosin A that forms ectopic filaments, we examined interactions between myosin A and M-line proteins in intact muscle cells. Ectopic myosin A recruits the giant kinase UNC-89/obscurin, a presumed scaffolding protein, in an interaction that requires the zinc-finger protein UNC-98, but not UNC-82/NUAK, UNC-97/PINCH, or UNC-96. In myosin A mutants, UNC-89/obscurin patterning is highly defective in embryos and adults. A chimeric myosin containing 169 residues of the myosin A C-terminal rod, coincident with the UNC-98/ZnF binding site, is sufficient for colocalization of UNC-89/obscurin and UNC-98/ZnF in M-line structures whereas a myosin chimera lacking these residues colocalizes with UNC-89/obscurin in M-lines that lack UNC-98. Thus, at least two myosin A rod regions contribute independently to M-line organization. We hypothesize that these M-line-organizing functions correspond to the essential "filament initiation function" performed by this isoform.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37983932

RESUMO

The mechanisms that ensure proper assembly, activity, and turnover of myosin II filaments are fundamental to a diverse range of cellular processes. In Caenorhabditis elegans striated muscle, thick filaments contain two myosins that are functionally distinct and spatially segregated. Using transgenic double mutants, we demonstrate that the ability of increased myosin A expression to restore muscle structure and movement in myosin B mutants requires UNC-82/NUAK kinase activity. Myosin B function appears unaffected in the kinase-impaired unc-82(e1220) mutant: the recessive antimorphic effects on early assembly of paramyosin and myosin A in this mutant are counteracted by increased myosin B expression and exacerbated by loss of myosin B. Using chimeric myosins and motility assays, we mapped the region of myosin A that requires UNC-82 activity to a 531-amino-acid region of the coiled-coil rod. This region includes the 264-amino-acid Region 1, which is sufficient in chimeric myosins to rescue the essential filament-initiation function of myosin A, as well as two sites that interact with myosin head domains in the Interacting Heads Motif. A specific physical interaction between myosin A and UNC-82::GFP is supported by GFP labeling of ectopic myosin A filaments but not thin filaments. We hypothesize that UNC-82 regulates assembly competence of myosin A during parallel assembly in the filament arms.

3.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35021222

RESUMO

Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the "tip of the iceberg" since thousands of sequences remain uncharacterized in this enzyme family alone.


Assuntos
Magnoliopsida , Metiltransferases , Proteínas de Plantas , Magnoliopsida/classificação , Magnoliopsida/enzimologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Especificidade por Substrato
4.
Diabetes Res Clin Pract ; 177: 108871, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052248

RESUMO

BACKGROUND: Glycemic control and weight gain are two essential considerations in the pharmacological management of type 2 diabetes mellitus. Pharmacological agents are effective in lowering blood glucose levels but may result in significant weight gain. Liraglutideeffectively maintains glycemic control while reducingweight. METHODS: This is a real-world study and brief narrative review of the effects of liraglutide on glycemic control and weight in adult patients with type 2 diabetes mellitus. The study uses data extracted from the electronic health record of the Ministry of National Guard-Health Affairs. RESULTS: In this study of 348 subjects, there was a statistically significant reduction in hemoglobin A1c of 0.9% (P < .0001) and weight of 2.3 kg (P < .0001). The majority (77.3%) were on concomitant insulin.Subjects with a baseline hemoglobin A1c greater than 9% had a significantly greater reduction than those below 9% (-0.7%;P < .0001). Those with a weight more than 100 kg had a significantly greater reduction than those below 100 kg (-0.9 kg;P = .0096). CONCLUSION: In this real-world, observational study, liraglutide was shown to be effective in improving glycemic control and reducing weight in adult patients with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas/análise , Controle Glicêmico , Humanos , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Estudos Observacionais como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA