Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 5489084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275965

RESUMO

Stroke-related disabilities can have a major negative effect on the economic well-being of the person. When left untreated, a stroke can be fatal. According to the findings of this study, people who have had strokes generally have abnormal biosignals. Patients will be able to obtain prompt therapy in this manner if they are carefully monitored; their biosignals will be precisely assessed and real-time analysis will be performed. On the contrary, most stroke diagnosis and prediction systems rely on image analysis technologies such as CT or MRI, which are not only expensive but also hard to use. In this study, we develop a machine learning algorithm for the prediction of stroke in the brain, and this prediction is carried out from the real-time samples of electromyography (EMG) data. The study uses synthetic samples for training the support vector machine (SVM) classifier and then the testing is conducted in real-time samples. To improve the accuracy of prediction, the samples are generated using the data augmentation principle, which supports training with vast data. The simulation is conducted to test the efficacy of the model, and the results show that the proposed classifier achieves a higher rate of classification accuracy than the existing methods. Furthermore, it is seen that the rate of precision, recall, and f-measure is higher in the proposed SVM than in other methods.


Assuntos
Inteligência Artificial , Acidente Vascular Cerebral , Humanos , Aprendizado de Máquina , Algoritmos , Máquina de Vetores de Suporte , Acidente Vascular Cerebral/diagnóstico por imagem
2.
Contrast Media Mol Imaging ; 2022: 1502934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213561

RESUMO

Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brain's complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader's level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.


Assuntos
Eletroencefalografia , Epilepsia , Algoritmos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador
3.
Biomed Res Int ; 2022: 7760734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978632

RESUMO

All organisms contain antimicrobial peptides (AMPs), which are a critical component of the innate immune system. These chemicals have the ability to suppress the growth of a variety of fungi, bacteria, and viruses. Because AMPs interact with structural components of the microbial cell membrane and have a wide range of cellular targets, bacteria are unlikely to be able to develop resistance to them in the short term. The underlying structure of AMPs is critical in determining the selectivity with which they target their respective targets. As far as we know, peptides have not been tested in a lab to see if they can fight bacteria, fungus, and viruses in real life. In this paper, we develop an artificial neural network (ANN) using a back propagation neural network (BPNN) that enables optimal classification of tendency of a peptide sequence that involves the activities of antifungal, antibacterial, or antiviral. The BPNN is trained on the datasets collected across different repositories and then the overfitting is avoided using particle swarm optimization (PSO) algorithm. Hence, at the time of testing, the BPNN clearly finds the predicted samples belonging to the same classes and this avoids the problem of finding the false positives. The simulation is conducted to test the efficacy of the model against various metrics that includes accuracy, precision, recall, and f1-measure. The effectiveness of the BPNN-PSO model in classifying instances at a faster rate than other techniques is demonstrated by its performance. The principle is straightforward, it is not difficult to programme, it converges more quickly, and it generally offers a superior solution.


Assuntos
Algoritmos , Redes Neurais de Computação , Antifúngicos , Simulação por Computador , Peptídeos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35873626

RESUMO

In recent times, humans who have been exposed to influenza A viruses (IAV) may not become hostile. Despite the fact that KLRD1 has been discovered as an influenza susceptibility biomarker, it remains to be seen if pre-exposure host gene expression can predict flu symptoms. In this paper, we enable the examination of flu using deep neural networks from input human gene expression datasets with various subtype viruses. This study enables the utilization of these datasets to forecast the spread of flu and can provide the necessary steps to eradicate the flu. The simulation is conducted to test the efficiency of the model in predicting the spread against various input datasets. The results of the simulation show that the proposed method offers a better prediction ability of 2.98% more than other existing methods in finding the spread of flu.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35722151

RESUMO

Dengue fever modelling in endemic locations is critical to reducing outbreaks and improving vector-borne illness control. Early projections of dengue are a crucial tool for disease control because of the unavailability of treatments and universal vaccination. Neural networks have made significant contributions to public health in a variety of ways. In this paper, we develop a deep learning modelling using random forest (RF) that helps extract the features of the dengue fever from the text datasets. The proposed modelling involves the data collection, preprocessing of the input texts, and feature extraction. The extracted features are studied to test how well the feature extraction using RF is effective on dengue datasets. The simulation result shows that the proposed method achieves higher degree of accuracy that offers an improvement of more than 12% than the existing methods in extracting the features from the input datasets than the other feature extraction methods. Further, the study reduces the errors associated with feature extraction that is 10% lesser than the other existing methods, and this shows the efficacy of the model.

6.
Biomed Res Int ; 2022: 1293548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769667

RESUMO

In this paper, we develop a detection module with strong training testing to develop a dense convolutional neural network model. The model is designed in such a way that it is trained with necessary features for optimal modelling of the cancer detection. The method involves preprocessing of computerized tomography (CT) images for optimal classification at the testing stages. A 10-fold cross-validation is conducted to test the reliability of the model for cancer detection. The experimental validation is conducted in python to validate the effectiveness of the model. The result shows that the model offers robust detection of cancer instances that novel approaches on large image datasets. The simulation result shows that the proposed method provides analyzes with 94% accuracy than other methods. Also, it helps to reduce the detection errors while classifying the cancer instances than other methods the several existing methods.


Assuntos
Neoplasias , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA