Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Omega (Westport) ; : 302228221144791, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37384902

RESUMO

This systematic review was conducted to estimate the pooled score of death anxiety during the COVID-19 pandemic. All eligible articles from January 2020 to May 2022 reporting the death anxiety score were included in the analysis b.y searching the Scopus, PubMed, Embase, and ISI databases. The standard score of death anxiety in the COVID-19 pandemic was 50%. The highest score of death anxiety was related to patients with COVID-19 (59.4%), other chronic patients (58.9%), and the elderly (56.4%). The lowest death anxiety score was related to the general population (42.9%) and health care workers (48.2%). The death anxiety score in the studies whose data was collected in 2020 and 2021 was 51% and 62%, respectively. During the COVID-19 pandemic, people experienced high death anxiety, which had terrible effects on their lives. Therefore, it seems necessary to provide training courses to deal with death anxiety for other possible pandemics.

2.
J Mol Model ; 29(5): 147, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069404

RESUMO

CONTEXT: Nanomaterials enjoy a great surface-to-surface area ratio, small size, extremely high stability, satisfactory bio-compatibility, improved permeability, specificity in receptor targeting, and tunable lifetime. This paper investigates alkali metal-doped borospherenes M@C4B32 (in which M denotes K, Na, and Li) as a highly efficient alternative for the delivery of drugs using density functional theory (DFT) calculations. A borospherene with a B36 nanocage doped with four C atoms (i.e., C4B32) recently showed promising performance. Therefore, the present work investigates C4B32 nanoclusters doped with alkali metals for the effective delivery of drugs. METHODS: This paper primarily seeks to evaluate the interaction between thioguanine (TG) as a cancer drug and pristine M@C4B32 through DFT (PBE/6-31 + G (d)) calculations. The UV-Vis spectroscopy indicated a redshift in the complex electronic spectra to higher wavelengths (i.e., lower energy levels). Hence, K@C4B32 was concluded to be effective in TG delivery.


Assuntos
Metais Alcalinos , Teoria Quântica , Metais Alcalinos/química , Lítio , Sódio , Íons/química
3.
Cell Commun Signal ; 21(1): 43, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829187

RESUMO

Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Terapia Viral Oncolítica/métodos , Neoplasias/patologia , Imunoterapia , Células-Tronco Mesenquimais/patologia , Microambiente Tumoral
4.
Curr Top Med Chem ; 23(12): 1104-1122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36722486

RESUMO

Tumor-associated macrophages (TAMs) play a pivotal role in the progression and resistance of tumors to different anticancer drugs. TAMs can modulate the tumor microenvironment (TME) in favor of immune system exhaustion. The interactions of TAMs with TME can affect the function of cytotoxic CD8+ T lymphocytes (CTLs) and natural killer (NK) cells. Furthermore, TAMs can induce cancer cell proliferation by releasing some growth factors, such as transforming growth factor (TGF)-ß. TAMs have several positive cross-talks with other immune suppressive cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancerassociated fibroblasts (CAFs), and cancer cells, leading to the release of growth factors, the proliferation of cancer cells and tumor growth. These interactions also can induce invasion and migration of cancer cells, angiogenesis, and metastasis. The inhibition of TAMs is an intriguing strategy for overcoming tumor resistance and suppression of cancer cells. Some natural-derived agents such as melatonin, curcumin, resveratrol, apigenin, and other flavonoids have shown the ability to modulate TME, including TAMs. These adjuvants may be able to boost antitumor immunity through the modulation of TAMs. This review explains the modulatory effects of some well-known naturally derived agents on the activity of TAMs. The modulation of TAMs by these agents may be useful in suppressing tumor growth and invasion.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Microambiente Tumoral
5.
Environ Sci Pollut Res Int ; 30(13): 37332-37343, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571676

RESUMO

Photocatalysis is considered a useful technique employed for the dye degradation through solar light, visible or UV light irradiation. In this study, TiO2, g-C3N4, and TiO2-g-C3N4 nanocomposites were successfully synthesized and studied for their ability to degrade Rhodamine B (RhB) and Reactive Orange 16 (RO-16), when exposed to visible light. The analytical techniques including XRD, TEM, SEM, DRS, BET, XPS, and fluorescence spectroscopy were used to explore the characteristics of all the prepared semiconductors. The photocatalytic performance of synthesized materials has been tested against both the selected dyes, and various experimental parameters were studied. The experimental results demonstrate that, in comparison to other fabricated composites, the TiO2-g-C3N4 composite with the optimal weight ratio of g-C3N4 (15 wt%) to TiO2 has shown outstanding degrading efficiency against RhB (89.62%) and RO-16 (97.20%). The degradation experiments were carried out at optimal conditions such as a catalyst load of 0.07 g, a dye concentration of 50 ppm, and a temperature of 50 ℃ at neutral pH in 90 min. In comparison to pure TiO2 and g-C3N4, the TiO2-g-C3N4, a semiconductor, has shown higher degradation efficiency due to its large surface area and decreased electron-hole recombination. The scavenger study gave an idea about the primary active species (-OH radicals), responsible for dye degradation. The reusability of TiO2-g-C3N4 was also examined in order to assess the composite sustainability.


Assuntos
Corantes , Luz , Raios Ultravioleta , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA