Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(8): e086745, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39117402

RESUMO

INTRODUCTION: Poststroke hyperglycaemia is an independent risk factor for poorer outcomes in patients treated with mechanical thrombectomy (MT) and is associated with a lower probability of functional recovery and higher mortality at 3 months. This study aims to evaluate the association between glucose levels during cerebral reperfusion with MT and functional recovery at 3 months, measured by subcutaneous continuous glucose monitoring (CGM) devices. METHODS: This prospective observational study aims to recruit 100 patients with ischaemic stroke and large anterior circulation vessel occlusion, in whom MT is indicated. CGM will be performed using a Freestyle Libre ProIQ device (FSL-CGM, Abbott Diabetes Care, Alameda, California, USA), which will be implanted on admission to the emergency department, to monitor glucose levels before, during and after reperfusion. The study's primary endpoint will be the functional status at 3 months, as measured by the dichotomised modified Rankin Scale (0-2 indicating good recovery and 3-6 indicating dependency or death). We will analyse expression profiles of microRNA (miRNA) at the time of reperfusion and 24 hours later, as potential biomarkers of ischaemic-reperfusion injury. The most promising miRNAs include miR-100, miR-29b, miR-339, miR-15a and miR-424. All patients will undergo treatment according to current international recommendations and local protocols for the treatment of stroke, including intravenous thrombolysis if indicated. ETHICS AND DISSEMINATION: This study (protocol V.1.1, dated 29 October 2021, code 6017) has been approved by the Clinical Research Ethics Committee of La Paz University Hospital (Madrid, Spain) and has been registered in ClinicalTrials.gov (NCT05871502). Study results will be disseminated through peer-reviewed publications in Open Access format and at conference presentations. TRIAL REGISTRATION NUMBER: NCT05871502.


Assuntos
Glicemia , AVC Isquêmico , Traumatismo por Reperfusão , Trombectomia , Humanos , Estudos Prospectivos , AVC Isquêmico/terapia , AVC Isquêmico/cirurgia , Trombectomia/métodos , Traumatismo por Reperfusão/terapia , Glicemia/metabolismo , Glicemia/análise , Hiperglicemia/complicações , Estudos Observacionais como Assunto , Masculino , MicroRNAs , Recuperação de Função Fisiológica , Feminino
2.
Biomed Pharmacother ; 176: 116834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815288

RESUMO

Although diabetes mellitus negatively affects post-ischaemic stroke injury and recovery, its impact on intracerebral haemorrhage (ICH) remains uncertain. This study aimed to investigate the effect of experimental diabetes (ED) on ICH-induced injury and neurological impairment. Sprague-Dawley rats were induced with ED 2 weeks before ICH induction. Animals were randomly assigned to four groups: 1)Healthy; 2)ICH; 3)ED; 4)ED-ICH. ICH and ED-ICH groups showed similar functional assessment. The ED-ICH group exhibited significantly lower haemorrhage volume compared with the ICH group, except at 1 mo. The oedema/ICH volume ratio and cistern displacement ratio were significantly higher in the ED-ICH group. Vascular markers revealed greater expression of α-SMA in the ED groups (ED and ED-ICH) compared with ICH. Conversely, the ICH groups (ED-ICH and ICH) exhibited higher levels of VEGF compared to the healthy and ED groups. An assessment of myelin tract integrity showed an increase in fractional anisotropy in the ED and ED-ICH groups compared with ICH. The ED group showed higher cryomyelin expression than the ED-ICH and ICH groups. Additionally, the ED groups (ED and ED-ICH) displayed higher expression of MOG and Olig-2 than ICH. As for inflammation, MCP-1 levels were significantly lower in the ED-ICH groups compared with the ICH group. Notably, ED did not aggravate the neurological outcome; however, it results in greater ICH-related brain oedema, greater brain structure displacement and lower haemorrhage volume. ED influences the cerebral vascularisation with an increase in vascular thickness, limits the inflammatory response and attenuates the deleterious effect of ICH on white matter integrity.


Assuntos
Hemorragia Cerebral , Diabetes Mellitus Experimental , Ratos Sprague-Dawley , Animais , Hemorragia Cerebral/patologia , Hemorragia Cerebral/metabolismo , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Ratos , Edema Encefálico/patologia , Edema Encefálico/metabolismo , Edema Encefálico/etiologia , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/patologia
3.
EBioMedicine ; 97: 104841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890368

RESUMO

BACKGROUND: Sepsis is associated with T-cell exhaustion, which significantly reduces patient outcomes. Therefore, targeting of immune checkpoints (ICs) is deemed necessary for effective sepsis management. Here, we evaluated the role of SIGLEC5 as an IC ligand and explored its potential as a biomarker for sepsis. METHODS: In vitro and in vivo assays were conducted to both analyse SIGLEC5's role as an IC ligand, as well as assess its impact on survival in sepsis. A multicentre prospective cohort study was conducted to evaluate the plasmatic soluble SIGLEC5 (sSIGLEC5) as a mortality predictor in the first 60 days after admission in sepsis patients. Recruitment included sepsis patients (n = 346), controls with systemic inflammatory response syndrome (n = 80), aneurism (n = 11), stroke (n = 16), and healthy volunteers (HVs, n = 100). FINDINGS: SIGLEC5 expression on monocytes was increased by HIF1α and was higher in septic patients than in healthy volunteers after ex vivo LPS challenge. Furthermore, SIGLEC5-PSGL1 interaction inhibited CD8+ T-cell proliferation. Administration of sSIGLEC5r (0.8 mg/kg) had adverse effects in mouse endotoxemia models. Additionally, plasma sSIGLEC5 levels of septic patients were higher than HVs and ROC analysis revealed it as a mortality marker with an AUC of 0.713 (95% CI, 0.656-0.769; p < 0.0001). Kaplan-Meier survival curve showed a significant decrease in survival above the calculated cut-off (HR of 3.418, 95% CI, 2.380-4.907, p < 0.0001 by log-rank test) estimated by Youden Index (523.6 ng/mL). INTERPRETATION: SIGLEC5 displays the hallmarks of an IC ligand, and plasma levels of sSIGLEC5 have been linked with increased mortality in septic patients. FUNDING: Instituto de Salud Carlos III (ISCIII) and "Fondos FEDER" to ELC (PIE15/00065, PI18/00148, PI14/01234, PI21/00869), CDF (PI21/01178), RLR (FI19/00334) and JAO (CD21/00059).


Assuntos
Sepse , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica , Linfócitos T CD8-Positivos/metabolismo , Lectinas , Ligantes , Prognóstico , Estudos Prospectivos , Curva ROC , Sepse/etiologia
4.
Front Immunol ; 14: 1224217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638059

RESUMO

Introduction: Multiple sclerosis is an inflammatory and demyelinating disease caused by a pathogenic immune response against the myelin sheath surfaces of oligodendrocytes. The demyelination has been classically associated with pathogenic B cells residing in the central nervous system that release autoreactive antibodies against myelin. The aim of the present study was to investigate whether extracellular vesicles (EVs) mediate delivery of myelin autoreactive antibodies from peripheral B cells against oligodendrocytes in multiple sclerosis (MS) and to analyze whether these EVs could mediate demyelination in vitro. We also studied the role of these EV-derived myelin antibodies as a diagnostic biomarker in MS. Methods: This is a prospective, observational, and single-center study that includes patients with MS and two control groups: patients with non-immune white matter lesions and healthy controls. We isolated B-cell-derived EVs from the blood and cerebrospinal fluid (CSF) and analyzed their myelin antibody content. We also studied whether antibody-loaded EVs reach oligodendrocytes in patients with MS and the effect on demyelination of B-cell-derived EVs containing antibodies in vitro. Results: This study enrolled 136 MS patients, 23 white matter lesions controls, and 39 healthy controls. We found autoreactive myelin antibodies in EVs that were released by peripheral B cells, but not by populations of B cells resident in CSF. We also identified a cut-off of 3.95 ng/mL of myelin basic protein autoantibodies in EVs from peripheral B cells, with 95.2% sensitivity and 88.2% specificity, which allows us to differentiate MS patients from healthy controls. EV-derived myelin antibodies were also detected in the oligodendrocytes of MS patients. Myelin antibody-loaded EVs from B cells induced myelin markers decrease of oligodendrocytes in vitro. Discussion: Peripheral reactive immune cells could contribute remotely to MS pathogenesis by delivering myelin antibodies to oligodendrocytes. EV-derived myelin antibodies could play a role as diagnostic biomarker in MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Linfócitos B , Sistema Nervoso Central , Autoanticorpos , Biomarcadores
5.
Brain Behav Immun ; 113: 44-55, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37406976

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated central nervous system disease whose course is unpredictable. Finding biomarkers that help to better comprehend the disease's pathogenesis is crucial for supporting clinical decision-making. Blood extracellular vesicles (EVs) are membrane-bound particles secreted by all cell types that contain information on the disease's pathological processes. PURPOSE: To identify the immune and nervous system-derived EV profile from blood that could have a specific role as biomarker in MS and assess its possible correlation with disease state. RESULTS: Higher levels of T cell-derived EVs and smaller size of neuron-derived EVs were associated with clinical relapse. The smaller size of the oligodendrocyte-derived EVs was related with motor and cognitive impairment. The proteomic analysis identified mannose-binding lectin serine protease 1 and complement factor H from immune system cell-derived EVs as autoimmune disease-associated proteins. We observed hepatocyte growth factor-like protein in EVs from T cells and inter-alpha-trypsin inhibitor heavy chain 2 from neurons as white matter injury-related proteins. In patients with MS, a specific protein profile was found in the EVs, higher levels of alpha-1-microglobulin and fibrinogen ß chain, lower levels of C1S and gelsolin in the immune system-released vesicles, and Talin-1 overexpression in oligodendrocyte EVs. These specific MS-associated proteins, as well as myelin basic protein in oligodendrocyte EVs, correlated with disease activity in the patients with MS. CONCLUSION: Neural-derived and immune-derived EVs found in blood appear to be good specific biomarkers in MS for reflecting the disease state.


Assuntos
Vesículas Extracelulares , Esclerose Múltipla , Humanos , Esclerose Múltipla/metabolismo , Proteômica , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Sistema Imunitário , Matriz Extracelular , Biomarcadores
6.
Mol Ther Nucleic Acids ; 32: 247-262, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090418

RESUMO

Circulating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls. Comparison of the protein cargo of circulating EVs at 28 days from animals with good vs. poor recovery showed down-expression of immune system activation pathways (CO4, KLKB1, PROC, FA9, and C1QA) and of restorative processes such as axon guidance (RAC1), myelination (MBP), and synaptic vesicle trafficking (SYN1), which is in line with better tissue preservation. Up-expression of PCSK9 (neuron differentiation) in xenogenic EVs-treated animals suggests enhancement of repair pathways. In conclusion, the administration of blood-derived EVs improved recovery after ICH. These findings open a new and promising opportunity for further development of restorative therapies to improve the outcomes after an ICH.

7.
Front Cell Neurosci ; 16: 1058546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776230

RESUMO

Introduction: Extracellular vesicles (EVs) participate in cell-to-cell paracrine signaling and can be biomarkers of the pathophysiological processes underlying disease. In intracerebral hemorrhage, the study of the number and molecular content of circulating EVs may help elucidate the biological mechanisms involved in damage and repair, contributing valuable information to the identification of new therapeutic targets. Methods: The objective of this study was to describe the number and protein content of blood-derived EVs following an intracerebral hemorrhage (ICH). For this purpose, an experimental ICH was induced in the striatum of Sprague-Dawley rats and EVs were isolated and characterized from blood at baseline, 24 h and 28 days. The protein content in the EVs was analyzed by mass spectrometric data-dependent acquisition; protein quantification was obtained by sequential window acquisition of all theoretical mass spectra data and compared at pre-defined time points. Results: Although no differences were found in the number of EVs, the proteomic study revealed that proteins related to the response to cellular damage such as deubiquitination, regulation of MAP kinase activity (UCHL1) and signal transduction (NDGR3), were up-expressed at 24 h compared to baseline; and that at 28 days, the protein expression profile was characterized by a higher content of the proteins involved in healing and repair processes such as cytoskeleton organization and response to growth factors (COR1B) and the regulation of autophagy (PI42B). Discussion: The protein content of circulating EVs at different time points following an ICH may reflect evolutionary changes in the pathophysiology of the disease.

8.
Biomedicines ; 9(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34356850

RESUMO

In order to investigate the role of circulating extracellular vesicles (EVs), proteins, and microRNAs as damage and repair markers in ischaemic stroke depending on its topography, subcortical (SC), and cortical-subcortical (CSC) involvement, we quantified the total amount of EVs using an enzyme-linked immunosorbent assay technique and analysed their global protein content using proteomics. We also employed a polymerase chain reaction to evaluate the circulating microRNA profile. The study included 81 patients with ischaemic stroke (26 SC and 55 CSC) and 22 healthy controls (HCs). No differences were found in circulating EV levels between the SC, CSC, and HC groups. We detected the specific expression of C1QA and Casp14 in the EVs of patients with CSC ischaemic stroke and the specific expression of ANXA2 in the EVs of patients with SC involvement. Patients with CSC ischaemic stroke showed a lower expression of miR-15a, miR-424, miR-100, and miR-339 compared with those with SC ischaemic stroke, and the levels of miR-339, miR-100, miR-199a, miR-369a, miR-424, and miR-15a were lower than those of the HCs. Circulating EV proteins and microRNAs from patients with CSC ischaemic stroke could be considered markers of neurite outgrowth, neurogenesis, inflammation process, and atherosclerosis. On the other hand, EV proteins and microRNAs from patients with SC ischaemic stroke might be markers of an anti-inflammatory process and blood-brain barrier disruption reduction.

9.
Biomedicines ; 9(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374290

RESUMO

Extracellular vesicles (EVs) are involved in intercellular signalling through the transfer of molecules during physiological and pathological conditions, such as ischaemic disease. EVs might therefore play a role in ischaemic stroke (IS) and myocardial infarction (MI). In the present study, we analysed the similarities and differences in the content of circulating EVs in patients with IS and MI. This prospective observational study enrolled 140 participants (81 patients with IS, 37 with MI and 22 healthy controls [HCs]). We analysed the protein and microRNA content from EVs using proteomics and reverse transcription quantitative real-time polymerase chain reaction and compared it between the groups. In the patients with IS and MI, we identified 14 common proteins. When comparing IS and MI, we found differences in the protein profiles (apolipoprotein B, alpha-2-macroglobulin, fibronectin). We also found lower levels of miR-340 and miR-424 and higher levels of miR-29b in the patients with IS and MI compared with the HCs. Lastly, we found higher miR-340 levels in IS than in MI. In conclusion, proteomic and miRNA analyses suggest a relationship between circulating EV content and the patient's disease state. Although IS and MI affect different organs (brain and heart) with distinct histological characteristics, certain EV proteins and miRNAs appear to participate in both diseases, while others are present only in patients with IS.

10.
J Neurosci Methods ; 346: 108935, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916202

RESUMO

BACKGROUND: Ultrasound is a safe, non-invasive and affordable imaging technique for the visualization of internal structures and the measurement of blood velocity using Doppler imaging. However, despite all these advantages, no study has identified the structures of the rat brain using conventional ultrasound. METHODS: A 13 MHz high frequency transducer was used to identify brain structures in the rat. The enlargement of the transcranial window was performed gradually using the ultrasound directly on the skin of the animal, then against the skull, then through a delimited craniotomy and finally through a complete craniotomy. RESULTS: Our results showed that ultrasound allowed the identification of cerebral ventricles and subarachnoid cisterns, as well as the analysis of real-time monitoring of cerebral blood flow in the main brain arteries of the rat. COMPARISON WITH EXISTING METHODS: Ultrasound is a tool with the potential to identify brain structures and blood vessels. In contrast to MRI, transcranial ultrasound is a fast, non-invasive, well tolerated and low-cost method and can be done at the bedside. CONCLUSION: In the present study, we described an atlas of the main brain structures as well as the main vasculature in the rat using ultrasound. This technique could be applied in animal models of various neurological diseases.


Assuntos
Encéfalo , Ultrassonografia Doppler Transcraniana , Animais , Velocidade do Fluxo Sanguíneo , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Ratos , Crânio , Ultrassonografia Doppler
11.
Stem Cell Res Ther ; 11(1): 70, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075692

RESUMO

BACKGROUND: Mesenchymal stem cell-derived extracellular vesicles (EVs) are one of the most promising therapeutics in protective and/or regenerative therapy in animal models of stroke using a dose of 100 µg. However, whether EVs dose is related to outcomes is not known. This study aimed to identify the optimal effective dose of EVs from adipose tissue-derived mesenchymal stem cells that promote functional recovery in subcortical stroke. MATERIALS AND METHODS: For this purpose, various doses of EVs were tested in an in vitro oxygen-glucose deprivation (OGD) model of oligodendrocytes and neuronal ischemia. At least 50 µg of EVs were necessary to induce proliferation and differentiation of oligodendrocyte and neurons in OGD conditions. For in vivo study, rats were subjected to subcortical stroke and various doses (50 µg, 100 µg, or 200 µg) of EVs were intravenously administered after 24 h. RESULTS: All the animals in the EV groups showed significant improvement in functional tests, with an increase in tract connectivity and brain repair-associated markers, and a decrease in cell death and in astrocyte-marker expression. Cell proliferation was increased in the groups receiving 50 µg and 100 µg doses. Only the 50-µg dose was associated with significant increases in brain-derived neurotrophic factor expression. CONCLUSION: In conclusion, 50 µg of EVs appears to be the minimal effective dose to enhance protection, brain repair, and recovery in subcortical ischemic stroke.


Assuntos
Vesículas Extracelulares/metabolismo , AVC Isquêmico/terapia , Animais , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , AVC Isquêmico/patologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA