Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3136, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035291

RESUMO

Structural degradation in manganese oxides leads to unstable electrocatalytic activity during long-term cycles. Herein, we overcome this obstacle by using proton exchange on well-defined layered Li2MnO3 with an O3-type structure to construct protonated Li2-xHxMnO3-n with a P3-type structure. The protonated catalyst exhibits high oxygen reduction reaction activity and excellent stability compared to previously reported cost-effective Mn-based oxides. Configuration interaction and density functional theory calculations indicate that Li2-xHxMnO3-n has fewer unstable O 2p holes with a Mn3.7+ valence state and a reduced interlayer distance, originating from the replacement of Li by H. The former is responsible for the structural stability, while the latter is responsible for the high transport property favorable for boosting activity. The optimization of both charge states to reduce unstable O 2p holes and crystalline structure to reduce the reaction pathway is an effective strategy for the rational design of electrocatalysts, with a likely extension to a broad variety of layered alkali-containing metal oxides.

2.
J Phys Condens Matter ; 33(31)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34011696

RESUMO

The chemical reactivity of two different selenium precursors (SeO2and Se) with nanoparticulated palladium was studied in a simple aqueous phase synthesis to generate palladium selenides (PdxSey). As confirmed by XRD, XPS, TEM and energy dispersive spectroscopy analyses, the products generated showed different degrees of selenization according to the nature of the chemical precursor. Such degree of selenization was more important with elemental selenium, in contrast to SeO2. Surface electrochemistry and CO stripping in alkaline medium, clearly revealed the different interactions and stability of PdxSeyachieved with the Pd/C precursor depending on the selenium source. The electrocatalysis of the oxygen reduction reaction was also influenced by the Se source, first in the different degree of reactivity, and second in the selectivity of the reduction product between H2O and H2O2, as well as the tolerance to the methanol oxidation reaction.

3.
ACS Appl Mater Interfaces ; 12(19): 21605-21615, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32309924

RESUMO

A series of cobalt-based multicomponent electrocatalysts (Co-Cat-T) for the oxygen reduction reaction (ORR) were synthesized by thermal pyrolysis of activated carbon-supported cobalt and melamine mixture from 500 to 800 °C. Their corresponding electrocatalytic performance was systematically investigated toward ORR in an alkaline electrolyte. The electrocatalyst chemical composition and structure evolution (e.g., microstrain, crystallite size, and cell volume) were confirmed by X-ray diffraction Rietveld analyses. The material generated at 550 °C (Co-Cat-T550) showed the largest cell volume of the C3N4 phase with a crystallite size of 4.1 ± 0.1 nm. Independent of the heat-treatment temperature, the cobalt atom was coordinated to nitrogen moieties. The following findings: cobalt inserted in the carbon nitride framework (Co-g-C3N4), abundant Co-Nx and pyridinic-N species, unique encapsulated cross-tubular structure, and disordered carbon domains performed better in the ORR with Co-Cat-T550 among the obtained electrocatalysts. In addition, Co-Cat-T550 showed performance comparable to Pt/C in an alkaline hydrogen/oxygen microfuel cell platform.

4.
ACS Omega ; 4(6): 10929-10938, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460191

RESUMO

Manipulating the atomic structure of semiconductors is a fine way to tune their properties. The rationalization of their modified properties is, however, particularly challenging as defects locally disrupt the long-range structural ordering, and a deeper effort is required to fully describe their structure. In this work, we investigated the photoelectrochemical properties of an anatase-type structure featuring a high content of titanium vacancies stabilized by dual-oxide substitution by fluoride and hydroxide anions. Such atomic modification induces a slight red-shift band gap energy of 0.08 eV as compared to pure TiO2, which was assigned to changes in titanium-anion ionocovalent bonding. Under illumination, electron paramagnetic resonance spectroscopy revealed the formation of TiIII and O2 - radicals which were not detected in defect-free TiO2. Consequently, the modified anatase shows higher ability to oxidize water with lower electron-hole recombination rate. To further increase the photoelectrochemical properties, we subsequently modified the compound by a surface functionalization with N-methyl-2-pyrrolidone (NMP). This treatment further modifies the chemical composition, which results in a red shift of the band gap energy to 3.03 eV. Moreover, the interaction of the NMP electron-donating molecules with the surface induces an absorption band in the visible region with an estimated band gap energy of 2.25-2.50 eV. Under illumination, the resulting core-shell structure produces a high concentration of reduced TiIII and O2 -, suggesting an effective charge carrier separation which is confirmed by high photoelectrochemical properties. This work provides new opportunities to better understand the structural features that affect the photogenerated charge carriers.

5.
Beilstein J Nanotechnol ; 9: 2628-2643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416913

RESUMO

Titanium oxide nanotubes (TNTs) were anodically grown in ethylene glycol electrolyte. The influence of the anodization time on their physicochemical and photoelectrochemical properties was evaluated. Concomitant with the anodization time, the NT length, fluorine content, and capacitance of the space charge region increased, affecting the opto-electronic properties (bandgap, bathochromic shift, band-edge position) and surface hydrophilicity of TiO2 NTs. These properties are at the origin of the photocatalytic activity (PCA), as proved with the photooxidation of methylene blue.

6.
ChemSusChem ; 11(1): 193-201, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29112796

RESUMO

Improving the efficiency of Pt-based oxygen reduction reaction (ORR) catalysts while also reducing costs remains an important challenge in energy research. To this end, we synthesized highly stable and active carbon-supported Mo-doped PtCu (Mo-PtCu/C) nanoparticles (NPs) from readily available precursors in a facile one-pot reaction. Mo-PtCu/C displays two-to-fourfold-higher ORR half-cell kinetics than reference PtCu/C and Pt/C materials, a trend that was confirmed in proof-of-concept experiments by using a H2 /O2 microlaminar fuel cell. This Mo-induced activity increase mirrors observations for Mo-PtNi/C NPs and possibly suggests an emerging trend. Electrochemical-accelerated stability tests revealed that dealloying was greatly reduced in Mo-PtCu/C in contrast to the binary alloys PtCu/C and PtMo/C. Supporting DFT studies suggested that the exceptional stability of Mo-PtCu could be attributed to oxidative resistance of the Mo-doped atoms. Furthermore, our calculations revealed that oxygen could induce segregation of Mo to the catalytic surface, at which it effected beneficial changes to the surface oxygen adsorption energetics in the context of the Sabatier principle.


Assuntos
Cobre/química , Técnicas Eletroquímicas/métodos , Molibdênio/química , Oxigênio/química , Platina/química , Catálise , Eletrodos , Cinética , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Oxirredução , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Difração de Raios X
7.
ACS Appl Mater Interfaces ; 9(3): 2541-2549, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28032991

RESUMO

A metal organic framework (MOF), synthesized from cobalt salt, melamine (mela), and 1,4-dicarboxybezene (BDC), was used as precursor to prepare Co/CoNx/N-CNT/C electrocatalyst via heat treatment at different temperature (700-900 °C) under nitrogen atmosphere. Crystallites size and microstrain in the 800 °C heat-treated sample (MOFs-800) were the lowest, whereas the stacking fault value was the highest among the rest of the homemade samples, as attested to by the Williamson-Hall analysis, hence assessing that the structural or/and surface modification of Co nanoparticles (NPs), found in MOFs-800, was different from that in other samples. CNTs in MOFs-800, interacting with Co NPs, were formed on the surface of the support, keeping the hexagonal shape of the initial MOF. Among the three homemade samples, the MOF-800 sample, with the best electrocatalytic performance toward oxygen reduction reaction (ORR) in 0.1 M KOH solution, showed the highest density of CNTs skin on the support, the lowest ID/IG ratio, and the largest N atomic content in form of pyridinic-N, CoNx, pyrrolic-N, graphitic-N, and oxidized-N species. Based on the binding energy shift toward lower energies, a strong interaction between the active site and the support was identified for MOFs-800 sample. The number of electron transfer was 3.8 on MOFs-800, close to the value of 4.0 determined on the Pt/C benchmark, thus implying a fast and efficient multielectron reduction of molecular oxygen on CoNx active sites. In addition, the chronoamperometric response within 24 000 s showed a more stable current density at 0.69 V/RHE on MOFs-800 as compared with that of Pt/C.

8.
ACS Appl Mater Interfaces ; 8(35): 23260-9, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27494283

RESUMO

In this work, platinum nanoparticles were impregnated by two different techniques, namely the carbonyl chemical route and photodeposition, onto systematically surface-modified multiwalled carbon nanotubes. The different interactions between platinum nanoparticles with sp(2)-sp(3) carbon nanodomains were investigated. The oxidation of an adsorbed monolayer of carbon monoxide, used to probe electronic catalytic modification, suggests a selective nucleation of platinum nanoparticles onto sp(2) carbon nanodomains when photodeposition synthesis is carried out. XPS attests the catalytic center electronic modification obtained by photodeposition. DFT calculations were used to determine the interaction energy of a Pt cluster with sp(2) and sp(3) carbon surfaces as well as with oxidized ones. The interaction energy and electronic structure of the platinum cluster presents dramatic changes as a function of the support surface chemistry, which also modifies its catalytic properties evaluated by the interaction with CO. The interaction energy was calculated to be 8-fold higher on sp(3) and oxidized surfaces in comparison to sp(2) domains. Accelerated Stability Test (AST) was applied only on the electronic-modified materials to evaluate the active phase degradation and their activity toward oxygen reduction reaction (ORR). The stability of photodeposited materials is correlated with the surface chemical nature of supports indicating that platinum nanoparticles supported onto multiwalled carbon nanotubes with the highest sp(2) character show the higher stability and activity toward ORR.

9.
Beilstein J Nanotechnol ; 6: 2000-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665070

RESUMO

We report on the analysis of the performance of each electrode of an air-breathing passive micro-direct methanol fuel cell (µDMFC) during polarization, stabilization and discharge, with CH3OH (2-20 M). A reference electrode with a microcapillary was used for separately measuring the anode the cathode potential. Information about the open circuit potential (OCP), the voltage and the mass transport related phenomena are available. Using 2 M CH3OH, the anode showed mass transport problems. With 4 and 6 M CH3OH both electrodes experience this situation, whereas with 10 and 20 M CH3OH the issue is attributed to the cathode. The stabilization and fuel consumption time depends mainly on the cathode performance, which is very sensitive to fuel crossover. The exposure to 20 M CH3OH produced a loss in performance of more than 75% of the highest power density (16.3 mW·cm(-2)).

10.
Chemphyschem ; 15(10): 2136-44, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24819164

RESUMO

Rare-earth-element (Y, Gd) modified Pt nanoparticles (NPs) supported on a carbon substrate (Vulcan XC-72) are synthesized via a water-in-oil chemical route. In both cases, X-ray diffraction (XRD) measurements show the non-formation of an alloyed material. Photoemission spectroscopy (XPS) results reveal that Y and Gd are oxidized. Additionally, no evidence of an electronic modification of Pt can be brought to light. Transmission electron microscopy (TEM) studies indicate that Pt-Y(2)O(3) and Pt-Gd(2)O(3) particles are well dispersed on the substrate-and that their average particle sizes are smaller than the Pt-NP sizes. The catalytic activity of the Pt-Y(2)O(3)/C and Pt-Gd(2)O(3)/C catalysts towards the oxygen reduction reaction (ORR) is studied in a 0.5 M H(2)SO(4) electrolyte. The surface and mass specific activities of the Pt-Y(2)O(3)/C catalyst towards the ORR at 0.9 V (vs. the reversible hydrogen electrode, RHE) are (54.3±1.2) µA cm(-2)(Pt) and MA=(23.1±0.5) mA mg(-1)(Pt), respectively. These values are 1.3-, and 1.6-fold higher than the values obtained with a Pt/C catalyst. Although the as-prepared Pt-Gd(2)O(3)/C catalyst has a lower catalytic activity for the ORR compared to Pt/C, the heat-treated sample shows a surface specific activity of about (53.0±0.7) µA cm(-2) Pt , and a mass specific activity (MA) of about (18.2±0.5) mA mg(-1) Pt at 0.9 V (vs. RHE). The enhancement of the ORR kinetics on the Pt-Y(2)O(3)/C and heat-treated Pt-Gd(2)O(3)/C catalysts could be associated with the formation of platinum NPs presenting modified surface properties.

11.
Phys Chem Chem Phys ; 16(27): 13820-6, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24473103

RESUMO

We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

12.
ChemSusChem ; 5(8): 1488-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22740236

RESUMO

The most critical issues to overcome in micro direct methanol fuel cells (µDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (µLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the µLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the µLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes.


Assuntos
Fontes de Energia Elétrica , Microtecnologia/instrumentação , Selênio/química , Fontes de Energia Elétrica/economia , Eletrodos , Formiatos/química , Platina/química
13.
Chemphyschem ; 11(13): 2732-44, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20373317

RESUMO

Herein, some chemical approaches to the tailoring of nanodivided materials are highlighted. Transition-metal materials in nanodivided form are essentially devoted to study the electrocatalytic reduction of molecular oxygen (ORR) in acid medium. This Minireview focuses on the physical and chemical structures of platinum-based and non-platinum-based materials. Due to the research dynamism in this field, the discussion is limited to a comprehensive review of ORR cathode materials investigated in the author's laboratory as well as to some relevant work obtained in other laboratories concerning the electrochemical ORR pathway and substrate effects.


Assuntos
Nanoestruturas/química , Oxigênio/química , Platina/química , Catálise , Oxirredução
14.
Phys Chem Chem Phys ; 11(18): 3573-9, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19421563

RESUMO

Carbon supported Au-Pt catalysts with different bimetallic compositions were prepared by water-in-oil (w/o) micro-emulsions. Carbon Vulcan XC-72R was added during the synthesis of particles in order to obtain good dispersion. Structural characterization was performed using XRD (X-ray diffraction) at wide angles, WAXS (wide-angle X-ray scattering) which showed that Pt-Au particles exhibited alloy properties in samples with high gold-content, and a segregation effect for those with low gold-content. Electrochemical characterization allowed estimation of the surface composition of Pt-Au alloys. These experiments have been confirmed by XRD data. Moreover, HRTEM (high resolution transmission electron microscopy) and XEDS (X-ray energy dispersive spectroscopy) characterization further confirmed the electrochemical results and XRD data. CO stripping experiments have shown an increasing bonding energy between CO and platinum with the gold content in the nanoalloys.

16.
Phys Chem Chem Phys ; 9(42): 5693-9, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17960258

RESUMO

The carbon monoxide molecule is used to probe the electronic properties of Ru/C and Se surface-modified Ru/C nanocatalysts. Coordination of a Se to a Ru surface strongly affects the vibrational properties and reactivity of the CO adsorbed. Marked alteration of the CO stretching frequency; increase of the Stark tuning rate for C-O vibration; and a positive shift of the onset of CO oxidation are observed for Se-modified Ru particles and attributed to the electronic effect of Se.

17.
Chemosphere ; 67(4): 793-801, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17123583

RESUMO

An efficient sequential, biological and photocatalytic treatment to reduce the pollutant levels in wastewater due to the bleaching process during paper production is reported. For a biological pre-treatment, 800 ml of non-sterilized effluent was inoculated with Trametes versicolor immobilized in polyurethane foam, with 25 g l(-1) glucose, 6.75 mM CuSO(4), and 0.22 mM MnSO(4) added, and cultured at 25 degrees C with an air flow of 800 ml min(-1) for 8d. The fungus did not inhibit growth of the heterotropic populations of the effluent. After 4d of culture, the chemical oxygen demand (COD) reduction and colour removal (CR) were 82% and 80%, respectively, with laccase (LAC) and manganese peroxidase (MnP) activities of 345 U l(-1) and 78 U l(-1), respectively. The COD reduction and CR correlated positively (p<0.0001) with LAC and MnP activities. Chlorophenol removal was 99% of pentachlorophenol, 99% of 2,3,4,6-tetrachlorophenol (2,3,4,6-TCP), 98% of 3,4-dichlorophenol (3,4-DCP) and 77% of 4-chlorophenol (4-CP), while 2,4,5-trichlorophenol (2,4,5-TCP) increased to 0.2 mg l(-1). The pre-treated effluent was then exposed to a photocatalytic treatment. The treatment with photolysis resulted in 9% CR and 46% COD reduction, 42% CR and 60% COD reduction by photocatalysis, and 62% CR and 85% COD reduction by heterogeneous photocatalysis with the system TiO(2)/Ru(x)Se(y) (Fig. 4). With this treatment the bacterial and fungal populations also decreased by 5 logarithmic units with respect to the biological treatment alone (Fig. 5). The total sequential treatment resulted in a 92% CR (from 5800 UC), 97% COD reduction (from 59 g l(-1)) and 99% chlorophenol removal at 96 h and 20 min.


Assuntos
Biodegradação Ambiental , Clorofenóis/química , Clorofenóis/efeitos da radiação , Resíduos Industriais , Polyporales/metabolismo , Rutênio/química , Titânio/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos , Catálise , Clorofenóis/metabolismo , Nanopartículas Metálicas , Papel , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA