Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CRISPR J ; 6(6): 543-556, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38108518

RESUMO

Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly Aedes aegypti, has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.


Assuntos
Culicidae , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mosquitos Vetores/genética , RNA Viral/genética , Antivirais/farmacologia
2.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747634

RESUMO

Escalating vector disease burdens pose significant global health risks, so innovative tools for targeting mosquitoes are critical. We engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR Cas13 and its potent collateral activity. Akin to a stealthy Trojan Horse hiding in stealth awaiting the presence of its enemy, REAPER remains concealed within the mosquito until an infectious blood meal is up taken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13 mediated RNA targeting significantly reduces viral replication and its promiscuous collateral activity can even kill infected mosquitoes. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.

4.
ACS Synth Biol ; 9(3): 678-681, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32129976

RESUMO

CRISPR-Cas9-based "gene drive" technologies have been proposed as a novel and effective means of controlling human diseases vectored by mosquitoes. However, more complex designs than those demonstrated to date-and an expanded molecular toolbox with which to build them-will be required to overcome the issues of resistance formation/evolution and drive spatial/temporal limitation. Foreseeing this need, we assessed the sgRNA transcriptional activities of 33 phylogenetically diverse insect Polymerase III promoters using three disease-relevant Culicine mosquito cell lines (Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus). We show that U6 promoters work across species with a range of transcriptional activity levels and find 7SK promoters to be especially promising because of their broad phylogenetic activity. We further show that U6 promoters can be substantially truncated without affecting transcriptional levels. These results will be of great utility to researchers involved in developing the next generation of gene drives.


Assuntos
Aedes/genética , Culex/genética , Genes de Insetos , Regiões Promotoras Genéticas , RNA Polimerase III/genética , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Filogenia , Reprodutibilidade dos Testes
5.
J Theor Biol ; 479: 14-21, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31260669

RESUMO

A range of gene drive systems have been proposed that are predicted to increase their frequency and that of associated desirable genetic material even if they confer a fitness cost on individuals carrying them. Engineered underdominance (UD) is such a system and, in one version, is based on the introduction of two independently segregating transgenic constructs each carrying a lethal gene, a suppressor for the lethal at the other locus and a desirable genetic "cargo". Under this system individuals carrying at least one copy of each construct (or no copies of either) are viable whilst those that possess just one of the transgenic constructs are non-viable. Previous theoretical work has explored various properties of these systems, concluding that they should persist indefinitely in absence of resistance or mutation. Here we study a population genetics model of UD gene drive that relaxes past assumptions by allowing for loss-of-function mutations in each introduced gene. We demonstrate that mutations are likely to cause UD systems to break down, eventually resulting in the elimination of introduced transgenes. We then go on to investigate the potential of releasing "free suppressor" carrying individuals as a new method for reversing UD gene drives and compare this to the release of wild-types; the only previously proposed reversal strategy for UD. This reveals that while free suppressor carrying individuals may represent an inexpensive reversal strategy due to extremely small release requirements, they are not able to return a fully wild-type population as rapidly as the release of wild-types.


Assuntos
Tecnologia de Impulso Genético/métodos , Mutação com Perda de Função , Modelos Genéticos , Animais , Animais Geneticamente Modificados , Genética Populacional , Transgenes
6.
PLoS Comput Biol ; 14(3): e1006059, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570717

RESUMO

A number of different genetics-based vector control methods have been proposed. Two approaches currently under development in Aedes aegypti mosquitoes are the two-locus engineered underdominance and killer-rescue gene drive systems. Each of these is theoretically capable of increasing in frequency within a population, thus spreading associated desirable genetic traits. Thus they have gained attention for their potential to aid in the fight against various mosquito-vectored diseases. In the case of engineered underdominance, introduced transgenes are theoretically capable of persisting indefinitely (i.e. it is self-sustaining) whilst in the killer-rescue system the rescue component should initially increase in frequency (while the lethal component (killer) is common) before eventually declining (when the killer is rare) and being eliminated (i.e. it is temporally self-limiting). The population genetics of both systems have been explored using discrete generation mathematical models. The effects of various ecological factors on these two systems have also been considered using alternative modelling methodologies. Here we formulate and analyse new mathematical models combining the population dynamics and population genetics of these two classes of gene drive that incorporate ecological factors not previously studied and are simple enough to allow the effects of each to be disentangled. In particular, we focus on the potential effects that may be obtained as a result of differing ecological factors such as strengths of larval competition; numbers of breeding sites; and the relative fitness of transgenic mosquitoes compared with their wild-type counterparts. We also extend our models to consider population dynamics in two demes in order to explore the effects of dispersal between neighbouring populations on the outcome of UD and KR gene drive systems.


Assuntos
Tecnologia de Impulso Genético/métodos , Tecnologia de Impulso Genético/estatística & dados numéricos , Mosquitos Vetores/genética , Aedes/genética , Animais , Animais Geneticamente Modificados , Vetores de Doenças , Engenharia Genética/métodos , Genética Populacional/métodos , Modelos Genéticos , Modelos Teóricos , Dinâmica Populacional , Transgenes
7.
J Theor Biol ; 430: 128-140, 2017 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-28728996

RESUMO

Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens.


Assuntos
Tecnologia de Impulso Genético , Insetos Vetores/genética , Aedes/genética , Aedes/virologia , Animais , Animais Geneticamente Modificados , Dengue/prevenção & controle , Vírus da Dengue , Feminino , Genética Populacional , Insetos Vetores/virologia , Masculino , Controle de Mosquitos/métodos , Viroses/prevenção & controle
8.
Vector Borne Zoonotic Dis ; 14(4): 291-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24689963

RESUMO

Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories-Scientific, Regulatory, Community Engagement, and Resources-in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a "go/no-go" decision-making process for further development and testing of the technologies.


Assuntos
Culicidae/genética , Insetos Vetores/genética , Controle de Mosquitos/métodos , Animais , Animais Geneticamente Modificados , Feminino , Engenharia Genética , Masculino , Responsabilidade Social
9.
Proc Natl Acad Sci U S A ; 104(22): 9540-5, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17519336

RESUMO

Motivated by the failure of current methods to control dengue fever, we formulate a mathematical model to assess the impact on the spread of a mosquito-borne viral disease of a strategy that releases adult male insects homozygous for a dominant, repressible, lethal genetic trait. A dynamic model for the female adult mosquito population, which incorporates the competition for female mating between released mosquitoes and wild mosquitoes, density-dependent competition during the larval stage, and realization of the lethal trait either before or after the larval stage, is embedded into a susceptible-exposed-infectious-susceptible human-vector epidemic model for the spread of the disease. For the special case in which the number of released mosquitoes is maintained in a fixed proportion to the number of adult female mosquitoes at each point in time, we derive mathematical formulas for the disease eradication condition and the approximate number of released mosquitoes necessary for eradication. Numerical results using data for dengue fever suggest that the proportional policy outperforms a release policy in which the released mosquito population is held constant, and that eradication in approximately 1 year is feasible for affected human populations on the order of 10(5) to 10(6), although the logistical considerations are daunting. We also construct a policy that achieves an exponential decay in the female mosquito population; this policy releases approximately the same number of mosquitoes as the proportional policy but achieves eradication nearly twice as fast.


Assuntos
Culicidae/genética , Culicidae/virologia , Dengue/epidemiologia , Dengue/transmissão , Genes Dominantes/genética , Genes Letais/genética , Modelos Biológicos , Animais , Culicidae/fisiologia , Feminino , Humanos , Masculino
10.
Development ; 130(13): 2997-3005, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12756181

RESUMO

At the transition from meiosis to cleavage mitoses, Drosophila requires the cell cycle regulators encoded by the genes, giant nuclei (gnu), plutonium (plu) and pan gu (png). Embryos lacking Gnu protein undergo DNA replication and centrosome proliferation without chromosome condensation or mitotic segregation. We have identified the gnu gene encoding a novel phosphoprotein dephosphorylated by Protein phosphatase 1 at egg activation. Gnu is normally expressed in the nurse cells and oocyte of the ovary and is degraded during the embryonic cleavage mitoses. Ovarian death and sterility result from gnu gain of function. gnu function requires the activity of pan gu and plu.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Meiose/fisiologia , Mitose/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Epistasia Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade , Masculino , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/fisiologia , Ovário/citologia , Ovário/fisiologia , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA