Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nanoscale Adv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39247856

RESUMO

The effective delivery of messenger ribonucleic acid (mRNA) to specific cell types and target tissues poses a significant challenge in nonviral therapeutic strategies. Lipid-based nanoparticles (LNPs) have emerged as a leading carrier system for delivering mRNA, particularly for infectious diseases, such as COVID-19. This study aimed to describe the synthesis of a novel lipopeptide based on surfactin, a naturally occurring surfactant. Additionally, a series of novel LNPs were rationally designed, based on the modified surfactin, OleSurf, and were formulated and optimized. The physicochemical properties, morphologies, and stabilities of the particles were evaluated. All formulations containing OleSurf produced particles with a diameter <80 nm and an encapsulation efficiency >95%. OleSurf LNPs demonstrated excellent transfection efficiency and luciferase expression with no cytotoxicity, compared to lipofectamine 2000, a known transfection reagent, and were comparable to the DLin-MC3-DMA lipid. OleSurf-based LNPs behaved as efficient mRNA carriers and showed enhanced mRNA-binding capabilities, associated with facilitated intracellular release, endosomal escape, and protection from endonuclease degradation. In addition, OleSurf-LNPs showed a higher mRNA delivery efficiency, a more advantageous biodistribution pattern, and an improved safety profile in vivo. Overall, the novel OleSurf LNPs presented an optimal delivery platform for mRNA therapeutics.

2.
Acta Trop ; 259: 107388, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39251172

RESUMO

Heartland virus (HRTV) is a single-stranded negative-sense RNA virus that infects human beings. Because there are no antiviral medications available to treat HRTV infection, supportive care management is used in cases of severe disease. Therefore, it has spurred research into developing a multi-epitope vaccine capable of providing effective protection against HRTV infection. A multi-epitope vaccine was created using a combination of immuno-informatics, molecular docking and molecular dynamics simulation in this investigation. The HRTV proteome was utilized to predict B-cell, T-cell (HTL and CTL), and IFN-epitopes. Following prediction, highly antigenic, non-allergenic and immunogenic epitopes were chosen, including 6 CTL, 8 HTL, and 5 LBL epitopes that were connected to the final peptide by AAY, GPGPG, and KK linkers, respectively. An adjuvant was introduced to the vaccine's N-terminal through the EAAAK linker to increase its immunogenicity. Following the inclusion of linkers and adjuvant, the final construct has 359 amino acids. The presence of B-cell and IFN-γ-epitopes validates the construct's acquired humoral and cell-mediated immune responses. To ensure the vaccine's safety and immunogenicity profile, its allergenicity, antigenicity, and various physicochemical characteristics were assessed. Docking was used to assess the binding affinity and molecular interaction between the vaccination and TLR-3. In silico cloning was used to confirm the construct's validity and expression efficiency. The results of these computer assays demonstrated that the designed vaccine is highly promising in terms of developing protective immunity against HRTV; nevertheless, additional in vivo and in vitro investigations are required to validate its true immune-protective efficiency.


Assuntos
Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vacinas Virais , Humanos , Vacinas Virais/imunologia , Vacinas Virais/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Biologia Computacional , Epitopos/imunologia , Epitopos/química , Bunyaviridae
3.
Sci Rep ; 14(1): 16588, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025925

RESUMO

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Assuntos
Antifúngicos , Óleos de Plantas , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Antifúngicos/química , Ratos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Triazóis/administração & dosagem , Triazóis/farmacocinética , Triazóis/química , Triazóis/farmacologia , Nanopartículas/química , Ratos Wistar , Candida albicans/efeitos dos fármacos , Infecções Fúngicas Invasivas/tratamento farmacológico , Aspergillus niger/efeitos dos fármacos , Micelas , Sementes/química , Liberação Controlada de Fármacos , Masculino , Portadores de Fármacos/química
4.
SAGE Open Med ; 12: 20503121241260149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045543

RESUMO

Introduction: Imposter syndrome is common among health disciplinary students, leading to serious consequences. However, the impact of imposter syndrome on self-esteem and quitting intention among respiratory therapy students has not been well researched. Objective: To report on the prevalence of imposter syndrome and assess its impacts on self-esteem and quitting intention among respiratory therapy students in Saudi Arabia. Methods: A nonprobability cross-sectional questionnaire using the Clance Impostor Phenomenon Scale and the Rosenberg Self-Esteem Scale was self-administered and distributed among respiratory therapy students between October 2022 and April 2023. Data analysis was performed using Descriptive and inferential statistics. Results: Of the 1500 respiratory therapy students invited to participate in the study, 901 surveys were completed; and thus, included in the final analysis. Of whom, 92% were presented with imposter syndrome: 44% with moderate, 35% with frequent, and 13% with intense feelings. In addition, 60% of respiratory therapy students and interns experienced low self-esteem, while only 0.5% indicated high self-esteem. More than 50% of the study participants thought about quitting the respiratory therapy program, and 30% have been diagnosed with psychological disorders. Furthermore, there was a significant association between imposter syndrome and low self-esteem, p < 0.001. Factors associated with imposter syndrome and low self-esteem were family income (<0.005) and parents' education (<0.005), quitting intention (<0.005), and having been diagnosed with psychological disorders (<0.005). Genders, academic levels, and grade point average were not associated with either imposter syndrome or self-esteem (>0.005). Conclusion: Imposter syndrome and low self-esteem are prevalent among respiratory therapy students, both of which are associated with considering leaving the respiratory therapy program. Effective interventions should be implemented to ameliorate the symptoms imposter syndrome and low self-esteem; thus, improving the academic experience of respiratory therapy students.

5.
ACS Omega ; 9(24): 25555-25574, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911815

RESUMO

Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".

6.
Saudi Pharm J ; 32(5): 102023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550333

RESUMO

The escalation of many coronavirus variants accompanied by the lack of an effective cure has motivated the hunt for effective antiviral medicines. In this regard, 18 Saudi Arabian medicinal plants were evaluated for SARS CoV-2 main protease (Mpro) inhibition activity. Among them, Terminalia brownii and Acacia asak alcoholic extracts exhibited significant Mpro inhibition, with inhibition rates of 95.3 % and 95.2 %, respectively, at a concentration of 100 µg/mL. Bioassay-guided phytochemical study for the most active n-butanol fraction of T. brownii led to identification of eleven compounds, including two phenolic acids (1, and 2), seven hydrolysable tannins (3-10), and one flavonoid (11) as well as four flavonoids from A. asak (12-15). The structures of the isolated compounds were established using various spectroscopic techniques and comparison with known compounds. To investigate the chemical interactions between the identified compounds and the target Mpro protein, molecular docking was performed using AutoDock 4.2. The findings identified compounds 4, 5, 10, and 14 as the most potential inhibitors of Mpro with binding energies of -9.3, -8.5, -8.1, and -7.8 kcal mol-1, respectively. In order to assess the stability of the protein-ligand complexes, molecular dynamics simulations were conducted for a duration of 100 ns, and various parameters such as RMSD, RMSF, Rg, and SASA were evaluated. All selected compounds 4, 5, 10, and 14 showed considerable Mpro inhibiting activity in vitro, with compound 4 being the most powerful with an IC50 value of 1.2 µg/mL. MM-GBSA free energy calculations also revealed compound 4 as the most powerful Mpro inhibitor. None of the compounds (4, 5, 10, and 14) display any significant cytotoxic activity against A549 and HUVEC cell lines.

7.
Int J Biol Macromol ; 264(Pt 1): 130278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373565

RESUMO

Ribophorin-1 serves as one of the subunits of the oligosaccharyltransferase (OST) complex located in the endoplasmic reticulum (ER). Until now, RPN-1 was considered an ER protein. However, our findings reveal that a minor fraction of RPN-1 escapes from the lumen of the ER and is ectopically expressed on the surface of different cell lines. The precise mechanism of protein translocation is unknown. The expression of RPN-1 was demonstrated through the isolation of membrane proteins using surface biotinylation and sucrose density gradient techniques. The confirmation of RPN-1 was obtained through surface staining using a specific antibody, revealing its expression on various cell lines. Additionally, we examined the expression of RPN-1 in different populations of PBMCs and observed a differential regulation of RPN-1 within PBMC subpopulations. Notably, there was a significant expression of RPN-1 on monocytes and B cells, but there was little to no population of T cells expressing RPN-1. We confirmed the expression of RPN-1 on THP-1, U937, and Jurkat cells. We also confirmed their surface expression through si-RNA knockdown. Our study shows RPN-1 expression on various cell surfaces, suggesting varied regulation among cell types. In the future, we may uncover its roles in immune function, signaling, and differentiation/proliferation.


Assuntos
Leucócitos Mononucleares , Proteínas de Membrana , Humanos , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Glicosiltransferases/metabolismo
8.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234048

RESUMO

Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using ΔG binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.

9.
J Biomol Struct Dyn ; : 1-23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174404

RESUMO

Recent monkeypox virus (MPXV) infections show the risk of MPXV transmission that persists today and the significance of surveillance and quick response methods to stop the virus's spread. Currently, the monkeypox virus infection is not specifically treated. In this study, QSAR models were designed using known inhibitors of cysteine proteinase from the vaccinia virus, where the Random Forest model and Ridge model had showed the best correlation between predicted and observed EC50. These models were used to screen Maliaceae family phytochemicals against MPXV cysteine proteinase. The compound, IMPHY010637 was detected in top 5 from both the QSAR screening models and showed best docked score (-8.6 kcal/mol) and thus selected for further investigation. Further, the IMPHY010637 showed interaction with the catalytic residue His241 of the protein as reported in earlier studies. The ADMET analysis of the compound showed the acceptable drug-like properties of IMPHY010637. However, these properties could be improved after experimental validation of protein-ligand binding. Both docked complex and poses created in 100 ns MD simulation of the protein-ligand complex showed the presence of multiple hydrogen bonds. RMSD and conformation analysis showed stable binding of IMPHY010637 with the cysteine proteinase of MPXV at its active site. Compared to the known inhibitor, IMPHY010637 showed better binding with the protein as observed by the PCA and MM/GBSA analysis. This study concluded IMPHY010637 as a potential inhibitor for the cysteine proteinase of MPXV using computational methods that could be tested in in-vitro experiments.Communicated by Ramaswamy H. Sarma.

10.
Saudi Pharm J ; 32(1): 101898, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192384

RESUMO

Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-ß-D-apiosyl-(1''' â†’ 6'')- ß-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA