Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 759: 110088, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992456

RESUMO

Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.


Assuntos
Imidazóis , Simulação de Acoplamento Molecular , Piperidinas , Inibidores de Proteínas Quinases , Piridazinas , Pirimidinas , Pirróis , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/química , Humanos , Piperidinas/farmacologia , Piperidinas/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Imidazóis/farmacologia , Imidazóis/química , Pirróis/farmacologia , Pirróis/química , Piridazinas/farmacologia , Piridazinas/química , Sítios de Ligação , Ligação Proteica , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inibidores , Ligantes
2.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992915

RESUMO

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Assuntos
Sítio Alostérico , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Simulação de Dinâmica Molecular , Aprovação de Drogas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inibidores
3.
Biol Trace Elem Res ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758479

RESUMO

The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates. Therefore, the primary objective of this study was to investigate the effect of ATO on the hepatic formation of arachidonic acid (AA) metabolites, hydroxyeicosatetraenoic acids (HETEs), as well as their most notable producing machinery, cytochrome P450 (CYP) enzymes. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO for 6 and 24 h. Total RNA was extracted from harvested liver tissues for qPCR analysis of target genes. Hepatic microsomal proteins underwent incubation with AA, followed by identification/quantification of the produced HETEs. ATO downregulated Cyp2e1, while induced Cyp2j9 and most of Cyp4a and Cyp4f, and this has resulted in a significant increase in 17(S)-HETE and 18(R)-HETE, while significantly decreased 18(S)-HETE. Additionally, ATO induced Cyp4a10, Cyp4a14, Cyp4f13, Cyp4f16, and Cyp4f18, resulting in a significant elevation in 20-HETE formation. In conclusion, ATO altered hepatic AA metabolites formation through modulating the underlying network of CYP enzymes. Modifying the homeostatic production of bioactive AA metabolites, such as HETEs, may entail toxic events that can, at least partly, explain ATO-induced hepatotoxicity. Such modification can also compromise the overall body tolerability to ATO treatment in cancer patients.

4.
Healthcare (Basel) ; 12(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540604

RESUMO

BACKGROUND: Identifying the potential factors of depression among medical students is the first step towards academic excellence and future safe medical practice. METHODS: A cross-sectional study was conducted from December 2019 to February 2020 at the University of Bisha, College of Medicine (UBCOM), Bisha Province, Saudi Arabia. Male medical students from year one to year six were involved. A self-administered questionnaire was used to collect data about students' socio-demographic and academic characteristics. The Arabic version of the PHQ-9 scale with a score of ≥10 was used to identify depression. Logistic regression analysis was used to assess the prevalence and correlates of depression. RESULTS: Of the 190 male students enrolled, 26.8% had depressive symptoms, of whom 45.1% were experiencing moderate to severe symptoms. The significantly highest depression rate was found among the second-year students, at 43.8% (OR = 2.544; 95% CI 1.178-5.714; p = 0.018), and the lowest rate was found among year one students, at 8.9% (OR = 0.203; 95% CI 0.075-0.560; p = 0.002). Univariate regression revealed a significant correlation between depression and dissatisfaction with family income, loss of family members, having psychological illness, difficulties in personal relationships, regretting studying medicine, failure in an academic year, a lower grade than expected, conflict with tutors, lack of college facilities and heavy academic load. In multivariate analysis, loss of family members (AOR = 3.69; 95% CI 1.86-7.413), difficulties in personal relationships (AOR = 2.371; 95% CI 1.009-5.575), regretting studying medicine (AOR = 3.764; 95% CI 1.657-8.550), and failing an academic year (AOR = 2.559; 95% CI 1.112-5.887) were independently correlated with depression. CONCLUSIONS: The study concluded that medical students at UBCOM experience depressive symptoms associated with various risk indicators. Optimizing the educational and social environment and infrastructure facilities at UBCOM might promote students' mental health and well-being.

5.
Arch Biochem Biophys ; 754: 109958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499054

RESUMO

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Ligação Proteica , Domínios Proteicos , Ligantes
6.
Toxicol Lett ; 394: 32-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403205

RESUMO

Dimethylmonothioarsinic acid (DMMTAV), a pentavalent thio-arsenic derivative, has been found in bodily fluids and tissues including urine, liver, kidney homogenates, plasma, and red blood cells. Although DMMTAV is a minor metabolite in humans and animals, its substantial toxicity raises concerns about potential carcinogenic effects. This toxicity could be attributed to arsenicals' ability to regulate cytochrome P450 1 A (CYP1A) enzymes, pivotal in procarcinogen activation or detoxification. The current study investigates DMMTAV's impact on CYP1A1/2 expression, individually and in conjunction with its inducer, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57BL/6 mice were intraperitoneally injected with 6 mg/kg DMMTAV, alone or with 15 µg/kg TCDD, for 6 and 24 h. Similarly, Hepa-1c1c7 cells were exposed to DMMTAV (0.5, 1, and 2 µM) with or without 1 nM TCDD for 6 and 24 h. DMMTAV hindered TCDD-induced elevation of Cyp1a1 mRNA, both in vivo (at 6 h) and in vitro, associated with reduced CYP1A regulatory element activation. Interestingly, in C57BL/6 mice, DMMTAV boosted TCDD-induced CYP1A1/2 protein and activity, unlike Hepa-1c1c7 cells where it suppressed both. DMMTAV co-exposure increased TCDD-induced Cyp1a2 mRNA. While Cyp1a1 mRNA stability remained unchanged, DMMTAV negatively affected protein stability, indicated by shortened half-life. Baseline levels of CYP1A1/2 mRNA, protein, and catalytic activities showed no significant alterations in DMMTAV-treated C57BL/6 mice and Hepa-1c1c7 cells. Taken together, these findings indicate, for the first time, that DMMTAV differentially modulates the TCDD-mediated induction of AHR-regulated enzymes in both liver of C57BL/6 mice and murine Hepa-1c1c7 cells suggesting that thio-arsenic pentavalent metabolites are extremely reactive and could play a role in the toxicity of arsenic.


Assuntos
Arsênio , Ácido Cacodílico/análogos & derivados , Dibenzodioxinas Policloradas , Humanos , Animais , Camundongos , Citocromo P-450 CYP1A1/metabolismo , Camundongos Endogâmicos C57BL , Sistema Enzimático do Citocromo P-450 , Dibenzodioxinas Policloradas/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
7.
Biol Trace Elem Res ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197905

RESUMO

Methylmercury (MeHg) and 2,3,7,8-tetrachlorodibenzodioxin (TCDD) are potent environmental pollutants implicated in the modulation of xenobiotic-metabolizing enzymes, particularly the cytochrome P450 1 family (CYP1) which is regulated by the aryl hydrocarbon receptor (AHR). However, the co-exposure to MeHg and TCDD raises concerns about their potential combined effects, necessitating thorough investigation. The primary objective of this study was to investigate the individual and combined effects of MeHg and TCDD on AHR-regulated CYP1 enzymes in mouse extrahepatic tissues. Therefore, C57BL/6 mice were administrated with MeHg (2.5 mg/kg) in the absence and presence of TCDD (15 µg/kg) for 6 and 24 h. The AHR-regulated CYP1 mRNA and protein expression levels were measured in the heart, lung, and kidney, using RT real-time PCR and western blot, respectively. Interestingly, treatment with MeHg exhibited mainly inhibitory effect, particularly, it decreased the basal level of Cyp1a1 and Cyp1a2 mRNA and protein, and that was more evident at the 24 h time point in kidney followed by heart. Similarly, when mice were co-exposed, MeHg was able to reduce the TCDD-induced Cyp1a1 and Cyp1a2 expression, however, MeHg potentiated kidney Cyp1b1 mRNA expression, opposing the observed change on its protein level. Also, MeHg induced antioxidant NAD(P)H:quinone oxidoreductase (NQO1) mRNA and protein in kidney, while heme-oxygenase (HO-1) mRNA was up-regulated in heart and kidney. In conclusion, this study reveals intricate interplay between MeHg and TCDD on AHR-regulated CYP1 enzymes, with interesting inhibitory effects observed that might be significant for procarcinogen metabolism. Varied responses across tissues highlight the potential implications for environmental health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA