Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498430

RESUMO

The objective of our work is to create a practical procedure to produce in vitro cell suspensions of O. basilicum and to ascertain the factors that encourage enhanced secondary metabolite production. We investigated the impact of these metabolites on Rhynchophorus ferrugineus's adult and larval target enzymes. The explants were cultivated on Murashige and Skoog (MS) media with 0.1 to 1 mg/L plant growth regulators (PGRs) to create calluses. 2,4-Dichlorophenoxyacetic acid (2,4-D), kinetin, 1-naphthylacetic acid (NAA), and indole-3-butryic acid (IBA) at 0.5, 0.5, 0.1, and 1 mg/L, respectively, with 3% sucrose led to the highest biomass accumulation. In cell suspensions, the total phenolic content (TPC) and total flavonoid content (TFC) were 39.68 and 5.49 mg/g DW, respectively, with abiotic Verticillium dahliae as an activator. Rosmarinic acid, ursolic acid, nepetoidin A and B, salvigenin, and quercetin-3-O-rutinoside as flavonoids and phenolics were analyzed using UPLC-I TQD MS, with the highest concentrations reached after 40 days. The extract demonstrates insecticidal activity against the fourth-instar larvae of R. ferrugineus, with adults at 1197 µg/mL and 12.5 µg/larvae as LC50 and LD50 values. The extract inhibited acetylcholine esterase (AChE), acid phosphatases (ACPs), alkaline phosphatases (ALPs), and gamma-aminobutyric acid-transaminase (GABA-T) in larval tissue in vitro, with IC50 values of 124.2, 149.3, 157.8, and 204.8 µg/mL, and in vivo, with IC50 values of 157.2, 179.4, 185.3, and 241.6 µg/mL, after 24 h. Pure compounds identified the activity of the extract, showing the inhibition of AChE, ACPs, ALPs, and GABA-T with IC50 values ˂ 200 µg/mL (in vitro). The ABMET examination revealed good oral permeability, and docking tests showed that the compounds bind AChE, ACPs, ALPs, and GABA-T. These findings show that a green bioprocessing method such as an O. basilicum cell suspension is a quick and straightforward technique for producing phenolic compounds, and it may be used to develop sustainable bio-insecticides and new green procedures.

2.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960029

RESUMO

It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains.

3.
ACS Omega ; 8(37): 33593-33609, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744783

RESUMO

The study aimed to evaluate the potential use of spent coffee powder (SCP) and spent tea powder (STP) as bioactive supplements for sponge cake. To achieve this aim, we initially compared the chemical properties of spent tea and coffee powders with those of their raw forms. Subsequently, three supplemented cake blends were prepared (1, 2, and 3% of SCP and STP) to test the effect of their addition on the chemophysical characteristics, sensory attributes, and shelf life of the final products. Our results indicated that spent tea and coffee are prospective materials for polyphenols. Spent tea powder could retain up to 72% (theaflavin trigallate), while spent coffee powder could retain up to 63.9% (1-caffeoylquinic acid) of the identified compounds compared to the raw materials. Furthermore, spent tea and coffee powders contained high levels of dietary fiber (18.95 and 31.65 g/100 g dry weight) and the elements potassium (254.6 and 1218.2 mg/100 g of DW), phosphorus (189.8 and 161.3 mg/100 g of DW), calcium (904.1 and 237.8 mg/100 g of DW), and magnesium (158.8 and 199.6 mg/100 g of DW). In addition, the fortified samples with SCP and STP significantly enhanced the nutritional values while retaining good sensory qualities compared to those of the control sample. Moreover, cakes fortified with the highest concentrations of SCP and STP (3%) showed a significant decrease in malondialdehyde content (MDA; 17.7 and 18.0 µg/g) and microbiological counts (2.4 and 2.5 log cfu/g) compared to the control cake after 14 days of storage. These findings suggest that incorporating SCP and STP into cakes not only enhances their nutritional value but also extends their shelf life. By utilizing these waste products, we can contribute to a more sustainable and ecofriendly food industry.

4.
Pak J Pharm Sci ; 36(4(Special)): 1291-1296, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37606018

RESUMO

The serious adverse effects, such as nephrotoxicity, limit the clinical utility of anticancer doxorubicin (DOX) drug. Cichorium endivia L. is reputed to show antioxidive effectiveness. The present investigation was conducted to explore the nephroprotective potential of crude methanol extract of Cichorium endivia (CECE) pretreatment against DOX-induced nephrotoxicity. Randomly, twenty male Wistar rats were assigned into four groups: Control (no-treatment), DOX group (15mg/kg, i.p, once), DOX + CECE (100mg/kg) and DOX + CECE (200mg/kg). All experiments were performed for 15 consecutive days except for DOX, was delivered once on day twelve. Samples of kidney and serum were collected one day after the last treatment for further assays. Pretreatment with CECE significantly protected the kidney function from DOX toxicity. Urea and creatinine levels were reduced in the serum. Furthermore, CECE administration decreased the damage in the renal histological structure. Restoration of the renal corpuscle and tubules structures was more manifested in a high dose (200mg/kg) of CECE. In summary, these findings demonstrate the nephroprotective effect of CECE pretreatment in DOX-treated rats.


Assuntos
Asteraceae , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Masculino , Ratos , Bioensaio , Doxorrubicina/toxicidade , Rim , Ratos Wistar
5.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297370

RESUMO

The use of natural ingredients to preserve the quality of fresh fruits is a promising approach to healthier products and a more sustainable industry. The present study was carried out to assess the effect of lactic acid (LA) and guava leaf extract (GLE) as natural preservatives on the quality parameters of Khalal Barhi dates. Physicochemical properties, antioxidant activity, color parameters, firmness, sensory properties, and yeast and mold counts of date fruits were evaluated during five weeks of storage at 4 ± 1 °C. The bioactive compounds in GLE were estimated by HPLC, which exhibited that GLE contains significant amounts of bioactive compounds, mainly, phenolics and flavonoids. With prolonged storage, the moisture content decreased, while the total soluble solids (TSS) increased in all samples. Similarly, a slight decrease in the pH with a concomitant increase in titratable acidity (TA) was observed throughout the storage. Generally, the samples treated with natural preservatives revealed lower changes in moisture content, TSS, pH, and TA than the control. The results exhibited decreased total phenolic content (TPC) and antioxidant activity for all samples with extended storage. The GLE and LA + GLE treatments significantly (p < 0.05) increased TPC and antioxidant activity on day 0 and preserved higher values of both during storage. Additionally, a decrease in the L* and b* values with an increase in the a* values of all samples was observed with advancement of storage. The LA + GLE treatment minimized the changes in color parameters and maintained higher firmness values during storage. Similarly, the sensory properties of all samples decreased with prolonged storage, but insignificant (p > 0.05) differences were found among the samples. Dipping treatments inhibited microbial growth over time, with the lowest yeast and mold counts achieved by the LA + GLE treatment. It can be concluded that the LA + GLE treatment has a protective effect on Khalal Barhi dates by minimizing post-harvest changes and decreasing the microbial load.

6.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375410

RESUMO

One of the most significant developed technologies is the use of acoustic waves to determine the chemical structures of biological tissues and their bioactivities. In addition, the use of new acoustic techniques for in vivo visualizing and imaging of animal and plant cellular chemical compositions could significantly help pave the way toward advanced analytical technologies. For instance, acoustic wave sensors (AWSs) based on quartz crystal microbalance (QCM) were used to identify the aromas of fermenting tea such as linalool, geraniol, and trans-2-hexenal. Therefore, this review focuses on the use of advanced acoustic technologies for tracking the composition changes in plant and animal tissues. In addition, a few key configurations of the AWS sensors and their different wave pattern applications in biomedical and microfluidic media progress are discussed.


Assuntos
Técnicas Biossensoriais , Animais , Técnicas Biossensoriais/métodos , Quartzo , Acústica , Técnicas de Microbalança de Cristal de Quartzo , Som
7.
Foods ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174443

RESUMO

Byproducts of second-grade dates and sweet potato tubers of noncommercial standard are produced along with the main product and are just as important as the main product but cannot be sold in the open market, as they may not be considered acceptable by consumers. Such byproducts can be valorized through the manufacture of a wide range of functional food products with high market appeal, such as jams. The research approach of this study included measuring antioxidant activity, total flavonoids, polyphenols, physicochemical and color indices, pH, and total sugar, as well as conducting a sensory evaluation, of mixed jams composed of different ratios of date jam (DFJ) to sweet potato jam (SPJ), namely, DP1 (80:20), DP2 (70:30), DP3 (60:40), and DP4 (50:50). To date, no other studies have considered producing mixed jam from dates and sweet potato byproducts. The sensory evaluation results indicated that jam DP4 (consisting of 50% date and 50% sweet potato) had the maximum overall acceptability. This investigation reveals the potential of using mixed byproducts in jams as natural functional ingredients, suggesting the economic value of valorization byproducts as low-cost ingredients to expand the properties, nutritional value, antioxidant content, and overall acceptability of jams. The discovered optimal mixed fruit jam has significant potential for further development as a commercial product.

8.
Plants (Basel) ; 12(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903864

RESUMO

Orchard cultural practices, i.e., irrigation, fertilizer, and fruit thinning, are crucially encompassed to enhance fruit yield and quality. Appropriate irrigation and fertilizer inputs improve plant growth and fruit quality, but their overuse leads to the degradation of the ecosystem and water quality, and other biological concerns. Potassium fertilizer improves fruit sugar and flavor and accelerates fruit ripening. Bunch thinning also significantly reduces the crop burden and improves the physicochemical characteristics of the fruit. Therefore, the present study aims to appraise the combined impact of irrigation, sulfate of potash (SOP) fertilizer, and fruit bunch thinning practices on fruit yield and quality of date palm cv. Sukary under the agro-climatic condition of the Al-Qassim (Buraydah) region, Kingdom of Saudi Arabia. To achieve these objectives, four irrigation levels (80, 100, 120, and 140% of crop evapotranspiration (ETc), three SOP fertilizer doses (2.5, 5, and 7.5 kg palm-1), and three fruit bunch thinning levels (8, 10, and 12 bunches palm-1) were applied. The effects of these factors were determined on fruit bunch traits, physicochemical fruit characteristics, fruit texture profile, fruit color parameters, fruit skin separation disorder, fruit grading, and yield attributes. The findings of the present study showed that the lowest (80% ETc) and highest (140% ETc) irrigation water levels, lowest SOP fertilizer dose (2.5 kg palm-1), and retaining the highest number of fruit bunch per tree (12 bunches) had a negative effect on most yield and quality attributes of date palm cv. Sukary. However, maintaining the date palm water requirement at 100 and 120% ETc, applying SOP fertilizer doses at 5 and 7.5 kg palm-1, and retaining 8-10 fruit bunches per palm had significantly positive effects on the fruit yield and quality characteristics. Therefore, it is concluded that applying 100% ETc irrigation water combined with a 5 kg palm-1 SOP fertilizer dose and maintaining 8-10 fruit bunches per palm is more equitable than other treatment combinations.

9.
Foods ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36981087

RESUMO

The use of natural preservatives in the storage of fresh fruits is a promising approach to healthier and more sustainable food processing. The current study was conducted to evaluate the effect of pomegranate peel extract (PPE) and lactic acid (LA) as natural preservatives on the shelf life of Khalal Barhi date fruits. Physicochemical properties, antioxidant activity, color parameters, texture profile, sensory characteristics, and microbiological quality of date fruits were evaluated during six weeks of cold storage (4 ± 1 °C). The bioactive compounds in PPE were determined by HPLC analysis, which showed that PPE is a rich source of bioactive compounds, particularly phenolics and flavonoids. The results exhibited decreased moisture content (from 68.36-68.43 to 62.13-63.11%) and an increased soluble solids content (from 27.16-27.24 to 31.45-33.91%) in all samples with prolonged storage. Likewise, a slight decrease in the pH (from 6.00-6.28 to 4.89-5.29) with an increase in acidity (from 0.12-0.14 to 0.23-0.27%) during storage was observed. Generally, treated samples showed lower changes in moisture content, soluble solids content, pH, and acidity than the control. A decrease in total phenolic content (TPC) (from 8.22-12.36 to 3.19-5.17 mg GAE/g) and antioxidant activity (from 44.11-68.26 to 23.84-38.52%) of all samples was observed with progressed storage, meanwhile, the treatment with PPE significantly (p < 0.05) increased TPC with a concomitant increase in antioxidant activity and maintained higher values of both throughout storage. The results exhibited a decrease in L* (from 54.87-55.92 to 41.68-45.68) and b* (from 36.25-37.09 to 23.59-25.42) values of all samples, while the a* value of all samples increased (from 1.29-1.40 to 2.22-2.43) with storage. Dipping treatment in PPE solution improved the color, exhibited the lowest change in color parameters, and maintained better texture properties during storage. Similarly, sensory properties decreased (from 8.21-8.66 to 6.71-7.21) during storage with insignificant (p > 0.05) differences among samples. Dipping treatments inhibited the growth of yeasts and molds over time, with the lowest microbial count recorded in the PPE-treated samples. It can be concluded that PPE was found to have protective effects on Khalal Barhi date fruit quality by controlling post-harvest changes and lowering the microbial load.

10.
Foods ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36981148

RESUMO

The extraction of date syrup produces a large quantity of by-product known as date press cake (DPC). This study aimed to utilize valuable ingredients of the DPC by adding 0 (Control), 2, 4, and 6% (g/100 g) of its powder to drinkable yogurt before fermentation. The physicochemical properties, texture profile, and sensory evaluation of the treated DPC-based drinkable yogurt (DPC drinkable yogurt) were measured after fermentation and 5, 10, and 15 days of storage at 4 °C. The modeling of the most critical quality attributes, i.e., pH, acidity, syneresis, water holding capacity (WHC), viscosity, and color difference (ΔE), was conducted to predict their values based on the DPC percentage and storage period. The DPC drinkable yogurt's total solids, protein, and fat ranged between 11.19-11.83, 3.10-3.42, and 2.26-2.34%, respectively. Adding 2-6% DPC slightly increased the pH of DPC drinkable yogurt and decreased its acidity (p > 0.05) during storage. Increasing the DPC percent in DPC drinkable yogurt decreased the syneresis value, and WHC increased during storage. The color parameters and viscosity of DPC drinkable yogurt recorded the highest value at the end of the storage period for all treatments and increased steadily with the increase in DPC. The evaluation of the prediction models indicated that the predicted values were close to the actual experimental values for pH (R2 = 0.779), acidity (R2 = 0.973), syneresis (R2 = 0.961), WHC (R2 = 0.989), viscosity (R2 = 0.99), L* (R2 = 0.919), a* (R2 = 0.995), b* (R2 = 0.922), and ΔE (R2 = 0.921). The textural analysis indicated that increasing the concentration of DPC in the DPC drinkable yogurt increased hardness (g), springiness, cohesiveness, and gumminess and decreased adhesiveness and resilience during cold storage. The evaluation of sensory acceptance during the cold storage of the DPC drinkable yogurt was conducted by 30 expert panelists. Each panelist received four cups of 10 mL drinkable yogurt treatments at 5-10 °C. The evaluation results indicated that adding 2% of DPC was closest in overall sensory acceptability to the control sample (p < 0.05). This study revealed the potential use of DPC in drinkable yogurt as a natural, functional, and low-cost ingredient to improve the fiber content, physicochemical properties, and overall acceptability. Therefore, the fermented DPC-based yogurt drink has the potency to be a practical, value-added, and novel alternative to dairy-based yogurt.

11.
Foods ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36981156

RESUMO

Date palm fruit (Phoenix dactylifera: Arecaceae) is rich in essential nutrients and possesses several pharmacological and medicinal activities. The current study aimed to optimize a water bath-assisted extraction method for two cultivars of date palm fruits, Anbara (An) and Reziz (Rz), and investigated the protective effect of the optimized date palm fruit extract against CCl4-induced liver toxicity in relation to oxidative stress, inflammation, apoptosis, and DNA integrity. The optimization process of two date palm fruit cultivars was applied, using response surface methodology through adjusting three "factors"; time, temperature, and rotation, to allow maximum contents of total phenolic (TPC), total flavonoid (TFC), reducing power (FRAP) and scavenging activity (ABTS) of the extract "responses". Extraction factors' application significantly enhanced TPC, TFC, FRAP, and ABTS responses by 1.30, 1.23, 3.03, and 2.06-fold, respectively in An and 2.18, 1.71, 1.11, and 2.62-fold, respectively in Rz, in relation to the convectional water extraction. Furthermore, co-administered CCl4 with An or Rz optimized extracts enhanced body weight gain, amended hepatic architecture, and diminished collagen fiber accumulation. Furthermore, An or Rz extracts reduced liver enzymes, hydroxyproline, alpha-fetoprotein (AFP), MDA, inflammatory cytokine (TNF-α, NF-κB) levels, and DNA fragmentation, while increasing deteriorated adiponectin (ADP) and antioxidant enzyme (GSH, GPX, NO, and IFN-γ) levels, relative to CCl4-administered animals. The protective effects of An or Rz-optimized extracts were also evidenced by suppressing hepatic fibrosis and improving liver function and structure via modulating oxidative stress, inflammation, and apoptosis, in CCl4-induced hepatic damage. Hence, the optimized extraction process for the two date palm fruits resulted in extracts which are rich in phenolic and flavonoid contents and with an elevated antioxidant power. The presence of these rich extracts could help to explain their proven hepatoprotective activity against CCl4-induced liver toxicity.

12.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766207

RESUMO

Processed cheese has rapidly been established as a commercial product in recent years. A new ingredient, a byproduct from date fruit seed (DFS), was obtained and tested as a fortified fiber from food industrial waste in block-type processed cheese. This is the first inclusive investigation to report such a test. Different concentrations of DFS (0%, 5%, 10%, 15%, and 20%) were added to block-type processed cheese as a partial substitution for butter. The current investigation was undertaken to estimate the impact of the partial substitution of butter by DFS and its effect on the product's quality in terms of its shelf life and physicochemical, microstructure, color, and sensory properties. Quality was assessed over a 150-day storage period. The results indicate that adding DFS to cheese increased its nutritional value due to the addition of fiber. Additionally, the texture profile of cheese was decreased in terms of hardness, adhesion, springiness, and cohesiveness. The overall structure of cheeses became less compact and had a more open cheese network, which increased with increasing DFS% and duration of storage. Moreover, DFS exhibited the darkest color with increasing ratios of supplementary DFS and duration of storage. Based on the results found in the present investigation, it was concluded that an acceptable quality of block-type processed cheese could be achieved using DFS fiber at 5% and 10% levels of fortification.

13.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808176

RESUMO

Cold storage is deemed one of the main elements in food safety management to maintain food quality. The temperature, relative humidity (RH), and air quality in cold storage rooms (CSRs) should be carefully controlled to ensure food quality and safety during cold storage. In addition, the components of CSR are exposed to risks caused by the electric current, high temperature surrounding the compressor of the condensing unit, snow and ice accumulation on the evaporator coils, and refrigerant gas leakage. These parameters affect the stored product quality, and the real-time sending of warnings is very important for early preemptive actionability against the risks that may cause damage to the components of the cold storage rooms. The IoT-based control (IoT-BC) with multipurpose sensors in food technologies presents solutions for postharvest quality management of fruits during cold storage. Therefore, this study aimed to design and evaluate a IoT-BC system to remotely control, risk alert, and monitor the microclimate parameters, i.e., RH, temperature, CO2, C2H4, and light and some operating parameters, i.e., the temperature of the refrigeration compressor, the electrical current, and the energy consumption for a modified CSR (MCSR). In addition, the impacts of the designed IoT-BC system on date fruit quality during cold storage were investigated compared with a traditional CSR (TCSR) as a case study. The results showed that the designed IoT-BC system precisely controlled the MCSR, provided reliable data about the interior microclimate atmosphere, applied electrical current and energy consumption of the MCSR, and sent the necessary alerts in case of an emergency based on real-time data analytics. There was no significant effect of the storage time on the most important quality attributes for stored date fruit in the MCSR compared with the TCSR. As a result, the MCSR maintained high-quality attributes of date fruits during cold storage. Based on the positive impact of the designed IoT-BC system on the MCSR and stored fruit quality, this modification seems quite suitable for remotely managing cold storage facilities.


Assuntos
Qualidade dos Alimentos , Frutas , Atmosfera , Microclima , Temperatura
14.
Molecules ; 28(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615198

RESUMO

The effectiveness of hydrocolloids (2% maximum in various combinations) from various sources, including maltodextrins (MD) with polymerization degree (DP) 18 and ziziphus gum (ZG), on the dough properties and quality of panned bread, as well as the possibility of using them to delay the bread staling process, have been investigated after 24, 72, and 96 h of storage. By evaluating the pasting capabilities of wheat flour slurry, dough properties, and the final product, the effects of the ziziphus gum (ZG) and maltodextrins (MD) were ascertained. A TA-TXT texture analyzer, a texture profile analysis test, and Micro-doughLab were used to evaluate the dough mixing properties. Additionally, a hedonic sensory evaluation of the overall acceptance of the bread, as well as its texture, aroma, taste, and color, was done. It is clear that MD had a more distinct impact than ZG on the way dough was mixed, the texture of the gel, and the finished product. The combination of MD and ZG significantly altered the bread's physical characteristics and its aging over time. The decreased peak viscosity and noticeably smaller setback of wheat flour gels, which corresponded to lower gel hardness, serve as evidence of reduced amylose retrogradation. At 2%, MD outperformed ZG in terms of increasing water absorption, dough stability, and bread loaf volume. With the exception of the blend that included three times as much MD as ZG, all mixes, including the control, exhibited an increase in bread firmness as a function of time after storage. Overall, the panelists liked (score of 5 and above) the bread made with mixes that had either MD or ZG, or a combination of both.


Assuntos
Pão , Farinha , Pão/análise , Farinha/análise , Triticum , Polissacarídeos
15.
Polymers (Basel) ; 15(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616432

RESUMO

Novel biosensors based on carboxymethyl cellulose extract from date palm fronds containing Ag nanoparticles as an electrochemical working electrode for fast hydroxymethylfurfural (HMF) sensing in date molasses were prepared. The morphological, structural, and crystallinity characteristics of the prepared Ag@CMC were described via SEM, DLS, TEM, and XRD. In addition, Raman spectroscopy and UV-VIS spectroscopy were performed, and thermal stability was studied. The investigated techniques indicated the successful incorporation of AgNPs into the CMC polymer. The sensing behavior of the prepared AgNPs@CMC electrode was studied in terms of cyclic voltammetry and linear scan voltammetry at different HMF concentrations. The results indicated high performance of the designed AgNPs@CMC, which was confirmed by the linear behavior of the relationship between the cathodic current and HMF content. Besides, real commercial samples were investigated using the novel AgNPs@CMC electrode.

16.
Foods ; 10(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34828917

RESUMO

Due to climatic variation, in-situ date palm fruit ripening is significantly delayed, and some fruits (Biser) cannot become ripe naturally on the tree. Because of that issue, the vast quantity of produce is mere wasted. Few traditional methods are adopted to ripe these unripe fruits through open sun drying or solar tunnel dehydration techniques. However, these methods have minimal use due to ambient temperature and relative humidity (RH) instability. Therefore, the present study was designed to find a precise combination of temperature and RH to artificially ripe the unripe Biser fruits under controlled environment chambers. For that purpose, eighteen automated artificial ripening systems were developed. The Biser fruits (cv. Khalas) were placed immediately after harvesting in the treatment chambers of the systems with three set-point temperatures (45, 50, and 55 °C) and six set-point RH (30, 35, 40, 45, 50, and 55%) until ripening. The optimal treatment combination for artificial ripening of Biser fruits was 50 °C and 50% RH. This combination provided good fruit size, color, firmness, total soluble solids (TSS), pH, and sugars content. As a result, there was a reduction in fruit weight loss and had optimum fruit ripening time. On the other hand, low temperature and RH delayed the ripening process, deteriorated fruit quality, and caused more weight loss. Although the combination of the highest temperature and RH (55 °C and 55%) reduced ripening time, the fruits have higher weight loss and negative quality. Therefore, the artificial ripening of unripe date palm Biser fruits can be achieved using 50 °C temperature and 50% RH combination. These findings can be applied in the field using solar energy systems on a commercial scale to reduce the postharvest loss of date palm fruits.

17.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201041

RESUMO

Drought is the most severe problem for agricultural production, and the intensity of this problem is increasing in most cultivated areas around the world. Hence improving water productivity is the primary purpose of sustainable agriculture. This study aimed to use cloud IoT solutions to control a modern subsurface irrigation system for improving irrigation management of date palms in arid regions. To achieve this goal, we designed, constructed, and validated the performance of a fully automated controlled subsurface irrigation system (CSIS) to monitor and control the irrigation water amount remotely. The CSIS is based on an autonomous sensors network to instantly collect the climatic parameters and volumetric soil water content in the study area. Therefore, we employed the ThingSpeak cloud platform to host sensor readings, perform algorithmic analysis, instant visualize the live data, create event-based alerts to the user, and send instructions to the IoT devices. The validation of the CSIS proved that automatically irrigating date palm trees controlled by the sensor-based irrigation scheduling (S-BIS) is more efficient than the time-based irrigation scheduling (T-BIS). The S-BIS provided the date palm with the optimum irrigation water amount at the opportune time directly in the functional root zone. Generally, the S-BIS and T-BIS of CSIS reduced the applied irrigation water amount by 64.1% and 61.2%, respectively, compared with traditional surface irrigation (TSI). The total annual amount of applied irrigation water for CSIS with S-BIS method, CSIS with T-BIS method, and TSI was 21.04, 22.76, and 58.71 m3 palm-1, respectively. The water productivity at the CSIS with S-BIS (1.783 kg m-3) and T-BIS (1.44 kg m-3) methods was significantly higher compared to the TSI (0.531 kg m-3). The CSIS with the S-BIS method kept the volumetric water content in the functional root zone next to the field capacity compared to the T-BIS method. The deigned CSIS with the S-BIS method characterized by the positive impact on the irrigation water management and enhancement on fruit yield of the date palm is quite proper for date palm irrigation in the arid regions.


Assuntos
Phoeniceae , Irrigação Agrícola , Agricultura , Clima Desértico , Solo , Água
18.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803012

RESUMO

Understanding the flight characteristics of insect pests is essential for designing effective strategies and programs for their management. In this study, we designed, constructed, and validated the performance of modern flight-testing systems (flight mill and flight tunnel) for studying the flight behavior of red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) under a controlled atmosphere. The flight-testing mill consisted of a flight mill, a testing chamber with an automatically controlled microclimate, and a data logging and processing unit. The data logging and processing unit consisted of a USB digital oscilloscope connected with a laptop. We used MATLAB 2020A to implement a graphical user interface (GUI) for real-time sampling and data processing. The flight-testing tunnel was fitted with a horizontal video camera to photograph the insects during flight. The program of Image-Pro plus V 10.0.8 was used for image processing and numerical data analysis to determine weevil tracking. The mean flight speed of RPW was 82.12 ± 8.5 m/min, and the RPW stopped flying at the temperature of 20 °C. The RPW flight speed in the flight tunnel was slightly higher than that on the flight mill. The angular deceleration was 0.797 rad/s2, and the centripetal force was 0.0203 N when a RPW tethered to the end of the rotating arm. The calculated moment of inertia of the RPW mass and the flight mill's rotating components was 9.521 × 10-3 N m2. The minimum thrust force needed to rotate the flight mill was 1.98 × 10-3 N. Therefore, the minimum power required to rotate the flight mill with the mean revolution per min of 58.02 rpm was approximately 2.589 × 10-3 W. The designed flight-testing systems and their applied software proved productive and useful tools in unveiling essential flight characteristics of test insects in the laboratory.


Assuntos
Gorgulhos , Animais , Atmosfera , Temperatura
19.
Plants (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918742

RESUMO

Date palm fruit (Phoenix dactylifera) is reputed to have numerous biological activities, including anticancer properties. To utilize the great fortune of this fruit, the current study aimed to maximize its pharmacological activity. Date palm extract (DPE) of Khalas cultivar was obtained in powder form and then was formulated into nanoemulsion (NE). The optimized DPE-NE was formulated along with its naked counterpart followed by studying their physical and chemical properties. A qualitative assessment of total serum protein associated with the surface of formulations was implemented. Studies for the in vitro release of DPE from developed NE before and after incubation with serum were investigated. Eventually, an MTT assay was conducted. Total phenolic and flavonoid contents were 22.89 ± 0.013 mg GAE/g of dry DPE and 9.90 ± 0.03 mg QE/g of dry DPE, respectively. Homogenous NE formulations were attained with appropriate particle size and viscosity that could be administered intravenously. The optimized PEGylated NE exhibited a proper particle size, PDI, and zeta potential. Total serum protein adsorbed on PEG-NE surface was significantly low. The release of the drug through in vitro study was effectively extended for 24 h. Ultimately; PEGylated NE of DPE attained significant inhibition for cancer cell viability with IC50 values of 18.6 ± 2.4 and 13.5 ± 1.8 µg/mL for MCF-7 and HepG2 cell lines, respectively. PEGylated NE of DPE of Khalas cultivar will open the gate for future adjuvants for cancer therapy.

20.
Foods ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926023

RESUMO

Dates are subjected to postharvest losses in quality and quantity caused by water loss, fermentation, insect infestation, and microbial spoilage during storage. Cold storage is the main element in the postharvest quality management used for fruit preservation. Although cold storage is used for dates, precision control of the relative humidity (RH) using ultrasonic applications is not used thus far, or it is applied to other fruits on a small scale. Therefore, we designed and constructed an ultrasonic humidifier (DUH) for RH control in the cold storage room (CSR) of dates. The optimum air velocity of 3 m s-1 at the outlets of the DUH ducts produced a mist amount of 6.8 kg h-1 with an average droplet diameter of 4.26 ± 1.43 µm at the applied voltage of 48 V and frequency of 2600 kHz of the transducers. The experimental validation was carried out by comparing a CSR controlled with the DUH with two conventional CSRs. The three tested CSRs were similar in dimensions, cooling system, and amount of stored dates. The time required for cooling 800 kg of dates in the controlled CSR from 25 °C to the target temperature of 5 °C was approximately 48 h. The DUH precisely controlled the RH at the maximum RH set point of 80% in the tested CSR at 5 °C. The controlled RH at 80% has a positive impact on the physicochemical characteristics of the stored dates. It significantly reduced the weight loss of the fruits and preserved fruit mass, moisture content, water activity, firmness, and color parameters. However, no significant effect was observed on fruit dimensions, sphericity, and aspect ratio. The microbial loads of mesophilic aerobic bacteria, molds, and yeasts fell within the acceptable limits in all tested CSRs. Both stored date fruits and artificially infested dates showed no signs of insect activity in the controlled CSR at the temperature of 5 °C and RH of 80%. The DUH proved to be a promising technology for postharvest quality management for dates during cold storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA