Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139819

RESUMO

INTRODUCTION: Ondansetron is a drug that is routinely prescribed for the management of nausea and vomiting associated with cancer, radiation therapy, and surgical operations. It is mainly metabolized in the liver, and it might accumulate in patients with hepatic impairment and lead to unwanted adverse events. METHODS: A physiologically based pharmacokinetic (PBPK) model was developed to predict the exposure of ondansetron in healthy and liver cirrhosis populations. The population-based PBPK simulator PK-Sim was utilized for simulating ondansetron exposure in healthy and liver cirrhosis populations. RESULTS: The developed model successfully described the pharmacokinetics of ondansetron in healthy and liver cirrhosis populations. The predicted area under the curve, maximum systemic concentration, and clearance were within the allowed twofold range. The exposure of ondansetron in the population of Child-Pugh class C has doubled in comparison to Child-Pugh class A. The dose has to be adjusted for liver cirrhosis patients to ensure comparable exposure to a healthy population. CONCLUSION: In this study, the developed PBPK model has described the pharmacokinetics of ondansetron successfully. The PBPK model has been successfully evaluated to be used as a tool for dose adjustments in liver cirrhosis patients.

2.
Pharmaceutics ; 14(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36365181

RESUMO

Labetalol is a drug that exhibits both alpha and beta-adrenergic receptor-blocking properties. The American Heart Association/American Stroke Association (AHA/ASA) has recommended labetalol as an initial treatment option for the management of severe hypertension. The physiologically based pharmacokinetic (PBPK) model is an in silico approach to determining the pharmacokinetics (PK) of a drug by incorporating blood flow and tissue composition of the organs. This study was conducted to evaluate the primary reasons for the difference in PK after intravenous (IV) and oral administration in healthy and diseased (renal and hepatic) populations. A comprehensive literature search was done using two databases, PubMed and Google Scholar. Various PK parameters were screened for the development of the PBPK model utilizing a population-based PK-Sim simulator. Simulations were performed after creating building blocks firstly in healthy individuals and then in diseased patients after IV and oral administration. The disposition of labetalol after IV and oral administration occurring in patients with the hepatic and renal disease was predicted. The model was evaluated by calculating the Robs/pred ratio and average fold error (AFE), which was in the two-fold error range. Moreover, Box-whisker plots were made to compare the overall concentration of the drug in the body at various stages of disease severity. The presented model provides useful quantitative estimates of drug dosing in patients fighting against severe chronic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA