Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stroke ; 53(6): 2114-2122, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240858

RESUMO

The global risk of cardiovascular disease, including ischemic disease such as stroke, remains high, and cardiovascular disease is the cause of one-third of all deaths worldwide. The main subjacent cause, atherosclerosis, is not fully understood. To improve early diagnosis and therapeutic strategies, it is crucial to unveil the key molecular mechanisms that lead to atherosclerosis development. The field of epitranscriptomics is blossoming and quickly advancing in fields like cancer research, nevertheless, poorly understood in the context of cardiovascular disease. Epitranscriptomic modifications are shown to regulate the metabolism and function of RNA molecules, which are important for cell functions such as cell proliferation, a key aspect in atherogenesis. As such, epitranscriptomic regulatory mechanisms can serve as novel checkpoints in gene expression during disease development. In this review, we describe examples of the latest research investigating epitranscriptomic modifications, in particular A-to-I editing and the covalent modification N6-methyladenosine and their regulatory proteins, in the context of cardiovascular disease. We additionally discuss the potential of these mechanisms as therapeutic targets and novel treatment options.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Aterosclerose/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Epigênese Genética , Humanos , RNA/metabolismo , Processamento Pós-Transcricional do RNA
2.
J Am Heart Assoc ; 10(14): e020656, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34259011

RESUMO

Background In cardiovascular diseases, atherosclerotic disorder are the most frequent and important with respect to morbidity and mortality. Inflammation mediated by immune cells is central in all parts of the atherosclerotic progress, and further understanding of the underlying mechanisms is needed. Growing evidence suggests that deamination of adenosine-to-inosine in RNA is crucial for a correct immune response; nevertheless, the role of adenosine-to-inosine RNA editing in atherogenesis has barely been studied. Several proteins have affinity for inosines in RNA, one being ENDOV (endonuclease V), which binds and cleaves RNA at inosines. Data on ENDOV in atherosclerosis are lacking. Methods and Results Quantitative polymerase chain reaction on ENDOV mRNA showed an increased level in human carotid atherosclerotic plaques compared with control veins. Inosine-ribonuclease activity as measured by an enzyme activity assay is detected in immune cells relevant for the atherosclerotic process. Abolishing EndoV in atherogenic apolipoprotein E-deficient (ApoE-/-) mice reduces the atherosclerotic plaque burden, both in size and lipid content. In addition, in a brain stroke model, mice without ENDOV suffer less damage than control mice. Finally, lack of EndoV reduces the recruitment of monocytes to atherosclerotic lesions in atherogenic ApoE-/- mice. Conclusions ENDOV is upregulated in human atherosclerotic lesions, and data from mice suggest that ENDOV promotes atherogenesis by enhancing the monocyte recruitment into the atherosclerotic lesion, potentially by increasing the effect of CCL2 activation on these cells.


Assuntos
Aorta Torácica/patologia , Aterosclerose/genética , Quimiocina CCL2/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Regulação da Expressão Gênica , Monócitos/metabolismo , RNA/genética , Idoso , Animais , Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Quimiocina CCL2/biossíntese , Citocinas , Desoxirribonuclease (Dímero de Pirimidina)/biossíntese , Modelos Animais de Doenças , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Estudos Retrospectivos
3.
Biochem Biophys Res Commun ; 533(4): 631-637, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33004177

RESUMO

BACKGROUND: More than 170 post-transcriptional RNA modifications regulate the localization, processing and function of cellular RNAs, and aberrant RNA modifications have been linked to a range of human diseases. The RNA modification landscape in atherosclerosis, the main underlying cause of cardiovascular diseases, is still largely unknown. METHODS: We used mass spectrometry to analyse a selection of RNA-modifying enzymes and the N6-methyladenosine (m6A) in carotid atherosclerotic lesion samples representing early and advanced stages of atherosclerosis as compared to non-atherosclerotic arteries from healthy controls. FINDINGS: (i) the detection of different levels of several enzymes involved in methylations occurring in rRNA and mRNA; (ii) these findings included changes in the levels of methyltransferases ('writers'), binding proteins ('readers') and demethylases ('erasers') during atherosclerosis as compared to non-atherosclerotic control arteries, with generally the most prominent differences in samples from early atherosclerotic lesions; and (iii) these changes were accompanied by a marked downregulation of m6A in rRNA, the most abundant and well-studied modification in mRNA with a wide range of effects on cell biology. INTERPRETATION: We show for the first time that RNA-modifying enzymes and the well-studied RNA modification m6A are differentially regulated in atherosclerotic lesions, which potentially could help creating new prognostic and treatment strategies.


Assuntos
Adenosina/análogos & derivados , Doenças das Artérias Carótidas/metabolismo , Metiltransferases/metabolismo , Placa Aterosclerótica/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Adenosina/análise , Adenosina/metabolismo , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Cromatografia Líquida , Humanos , Metilação , Oxirredutases N-Desmetilantes/metabolismo , Placa Aterosclerótica/enzimologia , Placa Aterosclerótica/genética , Espectrometria de Massas em Tandem
4.
Front Microbiol ; 11: 263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158436

RESUMO

The cellular methyl donor S-adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (m3A), which in Escherichia coli is removed by m3A-DNA glycosylase I (Tag) and II (AlkA). The tag gene is constitutively expressed, while alkA is induced by sub-lethal concentrations of methylating agents. We previously found that AlkA exhibits activity for the reactive oxygen-induced thymine (T) lesion 5-formyluracil (fU) in vitro. Here, we provide evidence for AlkA involvement in the repair of oxidized bases by showing that the adenine (A) ⋅ T → guanine (G) ⋅ cytosine (C) mutation rate increased 10-fold in E. coli wild-type and alkA - cells exposed to 0.1 mM 5-formyl-2'-deoxyuridine (fdU) compared to a wild-type specific reduction of the mutation rate at 0.2 mM fdU, which correlated with alkA gene induction. G⋅C → A⋅T alleviation occurred without alkA induction (at 0.1 mM fdU), correlating with a much higher AlkA efficiency for fU opposite to G than for that to A. The common keto form of fU is the AlkA substrate. Mispairing with G by ionized fU is favored by its exclusion from the AlkA active site.

5.
Nucleic Acids Res ; 48(8): 4463-4479, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083667

RESUMO

Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV-/- tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV-/- livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV-/- tumor suppressive phenotype calls for related studies in human HCC.


Assuntos
Desoxirribonuclease (Dímero de Pirimidina)/genética , Neoplasias Hepáticas Experimentais/genética , Adenosina/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinogênese , Linhagem Celular , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Expressão Gênica , Humanos , Inosina/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos Knockout , Edição de RNA , RNA de Transferência/metabolismo , Análise de Sequência de RNA , Sorafenibe/farmacologia
6.
PLoS One ; 14(11): e0225081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703097

RESUMO

Endonuclease V (ENDOV) is a ribonuclease with affinity for inosine which is the deamination product of adenosine. The genomes of most organisms, including human, encode ENDOV homologs, yet knowledge about in vivo functions and gene regulation is sparse. To contribute in this field, we analyzed mRNA and protein expression of human ENDOV (hENDOV). Analyses of public sequence databases revealed numerous hENDOV transcript variants suggesting extensive alternative splicing. Many of the transcripts lacked one or more exons corresponding to conserved regions of the ENDOV core domain, suggesting that these transcripts do not encode for active proteins. Three complete transcripts were found with open reading frames encoding 282, 308 and 309 amino acids, respectively. Recombinant hENDOV 308 and hENDOV 309 share the same cleavage activity as hENDOV 282 which is the variant that has been used in previous studies of hENDOV. However, hENDOV 309 binds inosine-containing RNA with stronger affinity than the other isoforms. Overexpressed GFP-fused isoforms were found in cytoplasm, nucleoli and arsenite induced stress granules in human cells as previously reported for hENDOV 282. RT-qPCR analysis of the 3'-termini showed that hENDOV 308 and hENDOV 309 transcripts are more abundant than hENDOV 282 transcripts in immortalized cell lines, but not in primary cells, suggesting that cells regulate hENDOV mRNA expression. In spite of the presence of all three full-length transcripts, mass spectrometry analyses identified peptides corresponding to the hENDOV 309 isoform only. This result suggests that further studies of human ENDOV should rather encompass the hENDOV 309 isoform.


Assuntos
Processamento Alternativo , Desoxirribonuclease (Dímero de Pirimidina)/genética , RNA Mensageiro/genética , Proteínas Virais/genética , Linhagem Celular , Humanos , Isoformas de Proteínas
8.
Nucleic Acids Res ; 46(22): 11698-11711, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30247619

RESUMO

tRNA genes are transcribed by RNA polymerase III (RNAPIII). During recent years it has become clear that RNAPIII activity is strictly regulated by the cell in response to environmental cues and the homeostatic status of the cell. However, the molecular mechanisms that control RNAPIII activity to regulate the amplitude of tDNA transcription in normally cycling cells are not well understood. Here, we show that tRNA levels fluctuate during the cell cycle and reveal an underlying molecular mechanism. The cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to boost tDNA transcription during late S phase. At tDNA genes, Cdk1 promotes the recruitment of TFIIIC, stimulates the interaction between TFIIIB and TFIIIC, and increases the dynamics of RNA polymerase III in vivo. Furthermore, we identified Bdp1 as a putative Cdk1 substrate in this process. Preventing Bdp1 phosphorylation prevented cell cycle-dependent recruitment of TFIIIC and abolished the cell cycle-dependent increase in tDNA transcription. Our findings demonstrate that under optimal growth conditions Cdk1 gates tRNA synthesis in S phase by regulating the RNAPIII machinery, revealing a direct link between the cell cycle and RNAPIII activity.


Assuntos
Proteína Quinase CDC2/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , RNA Polimerase III/genética , RNA de Transferência/genética , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Fosforilação , Ligação Proteica , RNA Polimerase III/metabolismo , RNA de Transferência/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo
9.
J Biol Chem ; 291(41): 21786-21801, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27573237

RESUMO

Endonuclease V (EndoV) is an enzyme with specificity for inosines in nucleic acids. Whereas the bacterial homologs are active on both DNA and RNA, the mammalian variants only cleave RNA, at least when assayed with recombinant proteins. Here we show that ectopically expressed, as well as endogenously expressed human (h)EndoV, share the same enzymatic properties as the recombinant protein and cleaves RNA with inosine but not DNA. In search for proteins interacting with hEndoV, polyadenylate-binding protein C1 (PABPC1) was identified. The association between PABPC1 and hEndoV is RNA dependent and furthermore, PABPC1 stimulates hEndoV activity and affinity for inosine-containing RNA. Upon cellular stress, PABPC1 relocates to cytoplasmic stress granules that are multimolecular aggregates of stalled translation initiation complexes formed to aid cell recovery. Arsenite, as well as other agents, triggered relocalization also of hEndoV to cytoplasmic stress granules. As inosines in RNA are highly abundant, hEndoV activity is likely regulated in cells to avoid aberrant cleavage of inosine-containing transcripts. Indeed, we find that hEndoV cleavage is inhibited by normal intracellular ATP concentrations. The ATP stores inside a cell do not overlay stress granules and we suggest that hEndoV is redistributed to stress granules as a strategy to create a local environment low in ATP to permit hEndoV activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Grânulos Citoplasmáticos/enzimologia , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , RNA/metabolismo , Trifosfato de Adenosina/genética , Arsenitos/farmacologia , Grânulos Citoplasmáticos/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Células HEK293 , Células HeLa , Humanos , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , RNA/genética
10.
Sci Rep ; 6: 24979, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27108838

RESUMO

Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV.


Assuntos
Desoxirribonuclease (Dímero de Pirimidina)/química , Inosina/química , Animais , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Humanos , Camundongos , Simulação de Dinâmica Molecular
11.
Prog Biophys Mol Biol ; 117(2-3): 134-142, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25824682

RESUMO

Deamination of the exocyclic amines in adenine, guanine and cytosine forms base lesions that may lead to mutations if not removed by DNA repair proteins. Prokaryotic endonuclease V (EndoV/Nfi) has long been known to incise DNA 3' to a variety of base lesions, including deaminated adenine, guanine and cytosine. Biochemical and genetic data implicate that EndoV is involved in repair of these deaminated bases. In contrast to DNA glycosylases that remove a series of modified/damaged bases in DNA by direct excision of the nucleobase, EndoV cleaves the DNA sugar phosphate backbone at the second phosphodiester 3' to the lesion without removing the deaminated base. Structural investigation of this unusual incision by EndoV has unravelled an enzyme with separate base lesion and active site pockets. A novel wedge motif was identified as a DNA strand-separation feature important for damage detection. Human EndoV appears inactive on DNA, but has been shown to incise various RNA substrates containing inosine. Inosine is the deamination product of adenosine and is frequently found in RNA. The structural basis for discrimination between DNA and RNA by human EndoV remains elusive.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , DNA/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Endodesoxirribonucleases/química , RNA/química , Adenina/química , Animais , Sequência de Bases , Sítios de Ligação , Simulação por Computador , DNA/genética , DNA/ultraestrutura , Desaminação/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/ultraestrutura , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/ultraestrutura , Ativação Enzimática , Humanos , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA/genética , RNA/ultraestrutura , Relação Estrutura-Atividade
12.
Free Radic Biol Med ; 77: 41-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25236744

RESUMO

The oxidation resistance gene 1 (OXR1) prevents oxidative stress-induced cell death by an unknown pathway. Here, depletion of human OXR1 (hOXR1) sensitized several human cell lines to hydrogen peroxide-induced oxidative stress, reduced mtDNA integrity, and increased apoptosis. In contrast, depletion of hOXR1 in cells lacking mtDNA showed no significant change in ROS or viability, suggesting that OXR1 prevents intracellular hydrogen peroxide-induced increase in oxidative stress levels to avoid a vicious cycle of increased oxidative mtDNA damage and ROS formation. Furthermore, expression of p21 and the antioxidant genes GPX2 and HO-1 was reduced in hOXR1-depleted cells. In sum, these data reveal that human OXR1 upregulates the expression of antioxidant genes via the p21 signaling pathway to suppress hydrogen peroxide-induced oxidative stress and maintain mtDNA integrity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA Mitocondrial/genética , Proteínas/fisiologia , Antioxidantes/metabolismo , Apoptose , Dosagem de Genes , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas Mitocondriais , Estresse Oxidativo , Transdução de Sinais , Regulação para Cima
13.
Curr Opin Genet Dev ; 26: 116-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25173738

RESUMO

Deamination of the nucleobases in DNA and RNA is a result of spontaneous hydrolysis, endogenous or environmental factors as well as deaminase enzymes. Adenosine is deaminated to inosine which is miscoding and preferentially base pairs with cytosine. In the case of DNA, this is a premutagenic event that is counteracted by DNA repair enzymes specifically engaged in recognition and removal of inosine. However, in RNA, inosine is an essential modification introduced by specialized enzymes in a highly regulated manner to generate transcriptome diversity. Defect editing is seen in various human disease including cancer, viral infections and neurological and psychiatric disorders. Enzymes catalyzing the deaminase reaction are well characterized and recently an unexpected function of Endonuclease V in RNA processing was revealed. Whereas bacterial Endonuclease V enzymes are classified as DNA repair enzymes, it appears that the mammalian enzymes are involved in processing of inosine in RNA. This yields an interesting yet unexplored, link between DNA and RNA processing. Further work is needed to gain understanding of the impact of inosine in DNA and RNA under normal physiology and disease progression.


Assuntos
Adenosina/metabolismo , DNA/metabolismo , Inosina/metabolismo , RNA/metabolismo , Animais , DNA/genética , Desaminação , Doença/genética , Humanos , Modelos Genéticos , RNA/genética , Edição de RNA/genética
14.
Nat Commun ; 4: 2271, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23912683

RESUMO

Endonuclease V orthologues are highly conserved proteins found in all kingdoms of life. While the prokaryotic enzymes are DNA repair proteins for removal of deaminated adenosine (inosine) from the genome, no clear role for the eukaryotic counterparts has hitherto been described. Here we report that human endonuclease V (ENDOV) and also Escherichia coli endonuclease V are highly active ribonucleases specific for inosine in RNA. Inosines are normal residues in certain RNAs introduced by specific deaminases. Adenosine-to-inosine editing is essential for proper function of these transcripts and defects are linked to various human disease. Here we show that human ENDOV cleaves an RNA substrate containing inosine in a position corresponding to a biologically important site for deamination in the Gabra-3 transcript of the GABA(A) neurotransmitter. Further, human ENDOV specifically incises transfer RNAs with inosine in the wobble position. This previously unknown RNA incision activity may suggest a role for endonuclease V in normal RNA metabolism.


Assuntos
Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Inosina/metabolismo , RNA/metabolismo , Linhagem Celular Tumoral , DNA/metabolismo , Escherichia coli/enzimologia , Humanos , RNA de Transferência/metabolismo , Especificidade por Substrato
15.
J Struct Biol ; 183(1): 66-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623903

RESUMO

The recently discovered HEAT-like repeat (HLR) DNA glycosylase superfamily is widely distributed in all domains of life. The present bioinformatics and phylogenetic analysis shows that HLR DNA glycosylase superfamily members in the genus Bacillus form three subfamilies: AlkC, AlkD and AlkF/AlkG. The crystal structure of AlkF shows structural similarity with the DNA glycosylases AlkC and AlkD, however neither AlkF nor AlkG display any DNA glycosylase activity. Instead, both proteins have affinity to branched DNA structures such as three-way and Holliday junctions. A unique ß-hairpin in the AlkF/AlkG subfamily is most likely inserted into the DNA major groove, and could be a structural determinant regulating DNA substrate affinity. We conclude that AlkF and AlkG represent a new family of HLR proteins with affinity for branched DNA structures.


Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/química , DNA Glicosilases/química , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína
16.
Structure ; 21(2): 257-65, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23313664

RESUMO

The DNA repair enzyme endonuclease V (EndoV) recognizes and cleaves DNA at deaminated adenine lesions (hypoxanthine). In addition, EndoV cleaves DNA containing various helical distortions such as loops, hairpins, and flaps. To understand the molecular basis of EndoV's ability to recognize and incise DNA structures with helical distortions, we solved the crystal structure of Thermotoga maritima EndoV in complex with DNA containing a one-nucleotide loop. The structure shows that a strand-separating wedge is crucial for DNA loop recognition, with DNA strands separated precisely at the helical distortion. The additional nucleotide forming the loop rests on the surface of the wedge, while the normal adenine opposite the loop is flipped into a base recognition pocket. Our data show a different principle for DNA loop recognition and cleavage by EndoV, in which a coordinated action of a DNA-intercalating wedge and a base pocket accommodating a flipped normal base facilitate strand incision.


Assuntos
Proteínas de Bactérias/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Thermotoga maritima/enzimologia , Adenina/química , Domínio Catalítico , Cristalografia por Raios X , Clivagem do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
17.
Structure ; 21(1): 154-166, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23245849

RESUMO

Modifications and loss of bases are frequent types of DNA lesions, often handled by the base excision repair (BER) pathway. BER is initiated by DNA glycosylases, generating abasic (AP) sites that are subsequently cleaved by AP endonucleases, which further pass on nicked DNA to downstream DNA polymerases and ligases. The coordinated handover of cytotoxic intermediates between different BER enzymes is most likely facilitated by the DNA conformation. Here, we present the atomic structure of Schizosaccharomyces pombe Mag2 in complex with DNA to reveal an unexpected structural basis for nonenzymatic AP site recognition with an unflipped AP site. Two surface-exposed loops intercalate and widen the DNA minor groove to generate a DNA conformation previously only found in the mismatch repair MutS-DNA complex. Consequently, the molecular role of Mag2 appears to be AP site recognition and protection, while possibly facilitating damage signaling by structurally sculpting the DNA substrate.


Assuntos
Ácido Apurínico/química , DNA Glicosilases/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Pareamento de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Fúngico/química , Epistasia Genética , Técnicas de Inativação de Genes , Modelos Moleculares , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos
18.
PLoS One ; 7(11): e47466, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139746

RESUMO

Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3' of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3'-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription.


Assuntos
DNA/química , DNA/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Homologia de Sequência de Aminoácidos , Processamento Alternativo/genética , Ciclo Celular/genética , Linhagem Celular , Nucléolo Celular/enzimologia , Biologia Computacional , Desoxirribonuclease (Dímero de Pirimidina)/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Nucleares/genética , Ligação Proteica/genética , Transporte Proteico , Especificidade por Substrato , Transcrição Gênica , Regulação para Cima/genética
19.
DNA Repair (Amst) ; 11(9): 766-73, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22858590

RESUMO

Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in three loops lining the DNA binding cavity, important for lesion recognition and DNA glycosylase/AP lyase activity for oxidized bases in double-stranded and single-stranded DNA. Single-turnover kinetics of NEIL1 revealed that removal of 5-hydroxycytosine (5-OHC) and 5-hydroxyuracil (5-OHU) is ∼25 and ∼10-fold faster in duplex DNA compared to single-stranded DNA, respectively, and also faster than removal of dihydrothymine (DHT) and dihydrouracil (DHU), both in double-stranded and single-stranded DNA. NEIL1 excised 8-oxoguanine (8-oxoG) only from double-stranded DNA and analysis of site-specific mutants revealed that Met81, Arg119 and Phe120 are essential for removal of 8-oxoG. Further, several arginine and histidine residues located in the loop connecting the two ß-strands forming the zincless finger motif and projecting into the DNA major groove, were shown to be imperative for lesion processing for both single- and double-stranded substrates. Trapping experiments of active site mutants revealed that the N-terminal Pro2 and Lys54 can alternate to form a Schiff-base complex between the protein and DNA. Hence, both Pro2 and Lys54 are involved in the AP lyase activity. While wildtype NEIL1 activity almost exclusively generated a δ-elimination product when processing single-stranded substrates, substitution of Lys54 changed this in favor of a ß-elimination product. These results suggest that Pro2 and Lys54 are both essential for the concerted action of the ß,δ-elimination in NEIL1.


Assuntos
DNA Glicosilases/química , Reparo do DNA , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Adutos de DNA , DNA Glicosilases/genética , DNA de Cadeia Simples , Humanos , Dados de Sequência Molecular , Bases de Schiff
20.
DNA Repair (Amst) ; 11(5): 453-62, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22365419

RESUMO

2-Oxoglutarate (2OG) and iron (Fe(II)) dependent dioxygenases catalyze a wide range of biological oxidations, including hydroxylation and demethylation of proteins and nucleic acids. AlkB from Escherichia coli directly reverses certain methyl lesions in DNA, and defines a subfamily of 2OG/Fe(II) dioxygenases that has so far been shown to be involved in both nucleic acid repair and modification. The human genome encodes nine AlkB homologs and the function of most of these is still unknown. The fission yeast Schizosaccharomyces pombe has two AlkB homologs and here we have addressed the function of one of these, Abh1, which appears not to possess a classical AlkB-like repair activity. No enzymatic activity was found toward methylated DNA or etheno adducts, nor was the yeast abh1- mutant sensitive toward alkylating agents. Interestingly, heterologous expression of E. coli AlkB protected the fission yeast cells from alkylation induced cytotoxicity, suggesting that S. pombe lacks systems for efficient repair of lesions that are AlkB substrates. Further, we show that Abh1 possesses an unexpected DNA incision activity at apurinic/apyrimidinic (AP) sites. This AP lyase activity did not depend on 2OG and Fe(II) and was not repressed by dioxygenase inhibitors. Survival and complementation analyses failed to reveal any biological role for AP lyase cleavage by Abh1. It appears that in vitro AP lyase activity can be detected for a number of enzymes belonging to structurally and functionally unrelated families, but the in vivo significance of such activities may be questionable.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Expressão Gênica , Oxigenases de Função Mista/genética , Mutação , Transporte Proteico , Schizosaccharomyces/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA