Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555575

RESUMO

Antibacterial restorative materials against caries-causing bacteria are highly preferred among high-risk patients, such as the elderly, and patients with metabolic diseases such as diabetes. This study aimed to enhance the antibacterial potential of resin composite with Magnesium-doped Zinc oxide (Mg-doped ZnO) nanoparticles (NPs) and to look for their effectiveness in the alloxan-induced diabetic model. Hexagonal Mg-doped ZnO NPs (22.3 nm diameter) were synthesized by co-precipitation method and characterized through ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. The Mg-doped ZnO NPs (1, 2.5 and 5% w/w) were then evaluated for antibacterial activity using a closed system in vitro biofilm model. Significant enhancement in the antibacterial properties was observed in composites with 1% Mg-doped ZnO compared to composites with bare ZnO reinforced NPs (Streptococcus mutans, p = 0.0005; Enterococcus faecalis, p = 0.0074, Saliva microcosm, p < 0.0001; Diabetic Saliva microcosm, p < 0.0001). At 1−2.5% Mg-doped ZnO NPs concentration, compressive strength and biocompatibility of composites were not affected. The pH buffering effect was also achieved at these concentrations, hence not allowing optimal conditions for the anaerobic bacteria to grow. Furthermore, composites with Mg-doped ZnO prevented secondary caries formation in the secondary caries model of alloxan-induced diabetes. Therefore, Mg-doped ZnO NPs are highly recommended as an antibacterial agent for resin composites to avoid biofilm and subsequent secondary caries formation in high-risk patients.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Idoso , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Zinco , Aloxano , Magnésio/farmacologia , Óxido de Magnésio/farmacologia , Óxido de Magnésio/uso terapêutico , Suscetibilidade à Cárie Dentária , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana
2.
Materials (Basel) ; 15(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36363419

RESUMO

Biofilm formation in the resin-composite interface is a major challenge for resin-based dental composites. Using doped z nanoparticles (NPs) to enhance the antibacterial properties of resin composites can be an effective approach to prevent this. The present study focused on the effectiveness of Selenium-doped ZnO (Se/ZnO) NPs as an antibacterial nanofiller in resin composites and their impact on their mechanical properties. Pristine and Se/ZnO NPs were synthesized by the mechanochemical method and confirmed through UV-Vis Spectroscopy, FTIR (Fourier Transform Infrared) analysis, X-ray Diffraction (XRD) crystallography, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Zeta analysis. The resin composites were then modified by varying concentrations of pristine and Se/ZnO NPs. A single species (S. mutans and E. faecalis) and a saliva microcosm model were utilized for antibacterial analysis. Hemolytic assay and compressive strength tests were also performed to test the modified composite resin's cytotoxicity and mechanical strength. When incorporated into composite resin, 1% Se/ZnO NPs showed higher antibacterial activity, biocompatibility, and higher mechanical strength when compared to composites with 1% ZnO NPs. The Se/ZnO NPs has been explored for the first time as an efficient antibacterial nanofiller for resin composites and showed effectiveness at lower concentrations, and hence can be an effective candidate in preventing secondary caries by limiting biofilm formation.

3.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364007

RESUMO

Resin composites have been widely used in dental restoration. However, polymerization shrinkage and resultant bacterial microleakage are major limitations that may lead to secondary caries. To overcome this, a new type of antibacterial resin composite containing ciprofloxacin-loaded silver nanoparticles (CIP-AgNPs) were synthesized. The chemical reduction approach successfully produced CIP-AgNPs, as demonstrated by FTIR, zeta potential, scanning electron microscopy, and ultraviolet-visible (UV-vis) spectroscopy. CIP-AgNPs were added to resin composites and the antibacterial activity of the dental composite discs were realized against Enterococcus faecalis, Streptococcus mutans, and the Saliva microcosm. The biocompatibility of modified resin composites was assessed and mechanical testing of modified dental composites was also performed. The results indicated that the antibacterial activity and compressive strength of resin composites containing CIP-AgNPs were enhanced compared to the control group. They were also biocompatible when compared to resin composites containing AgNPs. In short, these results established strong ground application for CIP-AgNP-modified dental composite resins.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Prata/farmacologia , Prata/química , Ciprofloxacina/farmacologia , Streptococcus mutans , Antibacterianos/farmacologia , Antibacterianos/química , Resinas Compostas/farmacologia , Resinas Compostas/química , Teste de Materiais , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA