Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1277, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218867

RESUMO

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces "ScabyNet", an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.


Assuntos
Aprendizado Profundo , Solanum tuberosum , Solanum tuberosum/genética , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Fenótipo
2.
Theor Appl Genet ; 136(7): 164, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392221

RESUMO

KEY MESSAGE: A major yellow rust resistance QTL, QYr.nmbu.6A, contributed consistent adult plant resistance in field trials across Europe, China, Kenya and Mexico. Puccinia striiformis f. sp. tritici, causing wheat yellow rust (YR), is one of the most devastating biotrophic pathogens affecting global wheat yields. Owing to the recent epidemic of the PstS10 race group in Europe, yellow rust has become a reoccurring disease in Norway since 2014. As all stage resistances (ASR) (or seedling resistances) are usually easily overcome by pathogen evolution, deployment of durable adult plant resistance (APR) is crucial for yellow rust resistance breeding. In this study, we assessed a Nordic spring wheat association mapping panel (n = 301) for yellow rust field resistance in seventeen field trials from 2015 to 2021, including nine locations in six countries across four different continents. Nine consistent QTL were identified across continents by genome-wide association studies (GWAS). One robust QTL on the long arm of chromosome 6A, QYr.nmbu.6A, was consistently detected in nine out of the seventeen trials. Haplotype analysis of QYr.nmbu.6A confirmed significant QTL effects in all tested environments and the effect was also validated using an independent panel of new Norwegian breeding lines. Increased frequency of the resistant haplotype was found in new varieties and breeding lines in comparison to older varieties and landraces, implying that the resistance might have been selected for due to the recent changes in the yellow rust pathogen population in Europe.


Assuntos
Basidiomycota , Triticum , Adulto , Humanos , Triticum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Noruega , Europa (Continente)
3.
PLoS One ; 18(5): e0285756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192177

RESUMO

Red raspberry (Rubus idaeus L.) is an economically valuable soft-fruit species with a relatively small (~300 Mb) but highly heterozygous diploid (2n = 2x = 14) genome. Chromosome-scale genome sequences are a vital tool in unravelling the genetic complexity controlling traits of interest in crop plants such as red raspberry, as well as for functional genomics, evolutionary studies, and pan-genomics diversity studies. In this study, we developed genome sequences of a primocane fruiting variety ('Autumn Bliss') and a floricane variety ('Malling Jewel'). The use of long-read Oxford Nanopore Technologies sequencing data yielded long read lengths that permitted well resolved genome sequences for the two cultivars to be assembled. The de novo assemblies of 'Malling Jewel' and 'Autumn Bliss' contained 79 and 136 contigs respectively, and 263.0 Mb of the 'Autumn Bliss' and 265.5 Mb of the 'Malling Jewel' assembly could be anchored unambiguously to a previously published red raspberry genome sequence of the cultivar 'Anitra'. Single copy ortholog analysis (BUSCO) revealed high levels of completeness in both genomes sequenced, with 97.4% of sequences identified in 'Autumn Bliss' and 97.7% in 'Malling Jewel'. The density of repetitive sequence contained in the 'Autumn Bliss' and 'Malling Jewel' assemblies was significantly higher than in the previously published assembly and centromeric and telomeric regions were identified in both assemblies. A total of 42,823 protein coding regions were identified in the 'Autumn Bliss' assembly, whilst 43,027 were identified in the 'Malling Jewel' assembly. These chromosome-scale genome sequences represent an excellent genomics resource for red raspberry, particularly around the highly repetitive centromeric and telomeric regions of the genome that are less complete in the previously published 'Anitra' genome sequence.


Assuntos
Nanoporos , Rubus , Rubus/genética , Genoma , Genômica , Análise de Sequência de DNA , Centrômero
4.
Theor Appl Genet ; 135(7): 2247-2263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597885

RESUMO

KEY MESSAGE: This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types. Quantitative trait loci (QTL) that are effective against several of the resistance types give valuable contributions to resistance breeding. A spring wheat panel of 300 cultivars and breeding lines of Nordic and exotic origins was tested in artificially inoculated field trials and subjected to visual FHB assessment in the years 2013-2015, 2019 and 2020. Deoxynivalenol (DON) content was measured on harvested grain samples, and anther extrusion (AE) was assessed in separate trials. Principal component analysis based on 35 and 25 K SNP arrays revealed the existence of two subgroups, dividing the panel into European and exotic lines. We employed a genome-wide association study to detect QTL associated with FHB traits and identify marker-trait associations that consistently influenced FHB resistance. A total of thirteen QTL were identified showing consistent effects across FHB resistance traits and environments. Haplotype analysis revealed a highly significant QTL on 7A, Qfhb.nmbu.7A.2, which was further validated on an independent set of breeding lines. Breeder-friendly KASP markers were developed for this QTL that can be used in marker-assisted selection. The lines in the wheat panel harbored from zero to five resistance alleles, and allele stacking showed that resistance can be significantly increased by combining several of these resistance alleles. This information enhances breeders´ possibilities for genomic prediction and to breed cultivars with improved FHB resistance.


Assuntos
Resistência à Doença , Fusarium , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
5.
PLoS One ; 17(3): e0265096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294470

RESUMO

Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar 'Anitra' are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R. idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders.


Assuntos
Rubus , Cromossomos , Genômica , Melhoramento Vegetal , Rubus/genética , Análise de Sequência de DNA
6.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200124

RESUMO

Identifying and characterizing cold responsive genes in Fragaria vesca associated with or responsible for low temperature tolerance is a vital part of strawberry cultivar development. In this study we have investigated the transcript levels of eight genes, two dehydrin genes, three putative ABA-regulated genes, two cold-inducible CBF genes and the alcohol dehydrogenase gene, extracted from leaf and crown tissues of three F. vesca genotypes that vary in cold tolerance. Transcript levels of the CBF/DREB1 transcription factor FvCBF1E exhibited stronger cold up-regulation in comparison to FvCBF1B.1 in all genotypes. Transcripts of FvADH were highly up-regulated in both crown and leaf tissues from all three genotypes. In the 'ALTA' genotype, FvADH transcripts were significantly higher in leaf than crown tissues and more than 10 to 20-fold greater than in the less cold-tolerant 'NCGR1363' and 'FDP817' genotypes. FvGEM, containing the conserved ABRE promoter element, transcript was found to be cold-regulated in crowns. Direct comparison of the kinetics of transcript and protein accumulation of dehydrins was scrutinized. In all genotypes and organs, the changes of XERO2 transcript levels generally preceded protein changes, while levels of COR47 protein accumulation preceded the increases in COR47 RNA in 'ALTA' crowns.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Genótipo
7.
Hortic Res ; 7: 125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821408

RESUMO

Strawberries are rich in polyphenols which impart health benefits when metabolized by the gut microbiome, including anti-inflammatory, neuroprotective, and antiproliferative effects. In addition, polyphenolic anthocyanins contribute to the attractive color of strawberry fruits. However, the genetic basis of polyphenol biosynthesis has not been extensively studied in strawberry. In this investigation, ripe fruits from three cultivated strawberry populations were characterized for polyphenol content using HPLC-DAD-MSn and genotyped using the iStraw35k array. GWAS and QTL analyses identified genetic loci controlling polyphenol biosynthesis. QTL were identified on four chromosomes for pelargonidin-3-O-malonylglucoside, pelargonidin-3-O-acetylglucoside, cinnamoyl glucose, and ellagic acid deoxyhexoside biosynthesis. Presence/absence of ellagic acid deoxyhexoside and pelargonidin-3-O-malonylglucoside was found to be under the control of major gene loci on LG1X2 and LG6b, respectively, on the F. × ananassa linkage maps. Interrogation of gene predictions in the F. vesca reference genome sequence identified a single candidate gene for ellagic acid deoxyhexoside biosynthesis, while seven malonyltransferase genes were identified as candidates for pelargonidin-3-O-malonylglucoside biosynthesis. Homologous malonyltransferase genes were identified in the F. × ananassa 'Camarosa' genome sequence but the candidate for ellagic acid deoxyhexoside biosynthesis was absent from the 'Camarosa' sequence. This study demonstrated that polyphenol biosynthesis in strawberry is, in some cases, under simple genetic control, supporting previous observations of the presence or absence of these compounds in strawberry fruits. It has also shed light on the mechanisms controlling polyphenol biosynthesis and enhanced the knowledge of these biosynthesis pathways in strawberry. The above findings will facilitate breeding for strawberries enriched in compounds with beneficial health effects.

8.
PLoS One ; 14(9): e0222829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536602

RESUMO

Strawberry powdery mildew (Podosphaera aphanis Wallr.) is a pathogen which infects the leaves, fruit, stolon and flowers of the cultivated strawberry (Fragaria ×ananassa), causing major yield losses, primarily through unmarketable fruit. The primary commercial control of the disease is the application of fungicidal sprays. However, as the use of key active ingredients of commercial fungicides is becoming increasingly restricted, interest in developing novel strawberry cultivars exhibiting resistance to the pathogen is growing rapidly. In this study, a mapping population derived from a cross between two commercial strawberry cultivars ('Sonata' and 'Babette') was genotyped with single nucleotide polymorphism (SNP) markers from the Axiom iStraw90k genotyping array and phenotyped for powdery mildew susceptibility in both glasshouse and field environments. Three distinct, significant QTLs for powdery mildew resistance were identified across the two experiments. Through comparison with previous studies and scrutiny of the F. vesca genome sequence, candidate genes underlying the genetic control of this trait were identified.


Assuntos
Fragaria/genética , Frutas/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Resistência à Doença/genética , Fragaria/classificação , Fragaria/microbiologia , Frutas/microbiologia , Genoma de Planta/genética , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
9.
Front Plant Sci ; 10: 542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130971

RESUMO

The northwards expansion of barley production requires adaptation to longer days, lower temperatures and stronger winds during the growing season. We have screened 169 lines of the current barley breeding gene pool in the Nordic region with regards to heading, maturity, height, and lodging under different environmental conditions in nineteen field trials over 3 years at eight locations in northern and central Europe. Through a genome-wide association scan we have linked phenotypic differences observed in multi-environment field trials (MET) to single nucleotide polymorphisms (SNP). We have identified an allele combination, only occurring among a few Icelandic lines, that affects heat sum to maturity and requires 214 growing degree days (GDD) less heat sum to maturity than the most common allele combination in the Nordic spring barley gene pool. This allele combination is beneficial in a cold environment, where autumn frost can destroy a late maturing harvest. Despite decades of intense breeding efforts relying heavily on the same germplasm, our results show that there still exists considerable variation within the current breeding gene pool and we identify ideal allele combinations for regional adaptation, which can facilitate the expansion of cereal cultivation even further northwards.

10.
Sci Rep ; 7: 44383, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287176

RESUMO

Red clover (Trifolium pratense L.) is one of the most important legume forage species in temperate livestock agriculture. Tetraploid red clover cultivars are generally producing less seed than diploid cultivars. Improving the seed setting potential of tetraploid cultivars is necessary to utilize the high forage quality and environmentally sustainable nitrogen fixation ability of red clover. In the current study, our aim was to identify candidate genes involved in seed setting. Two genotypes, 'Tripo' with weak seed setting and 'Lasang' with strong seed setting were selected for transcriptome analysis. De novo and reference based analyses of transcriptome assemblies were conducted to study the global transcriptome changes from early to late developmental stages of flower development of the two contrasting red clover genotypes. Transcript profiles, gene ontology enrichment and KEGG pathway analysis indicate that genes related to flower development, pollen pistil interactions, photosynthesis and embryo development are differentially expressed between these two genotypes. A significant number of genes related to pollination were overrepresented in 'Lasang', which might be a reason for its good seed setting ability. The candidate genes detected in this study might be used to develop molecular tools for breeding tetraploid red clover varieties with improved seed yield potentials.


Assuntos
Flores/genética , Genoma de Planta , Genótipo , Sementes/genética , Transcriptoma , Trifolium/genética , Mapeamento Cromossômico , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Melhoramento Vegetal/métodos , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Tetraploidia , Trifolium/crescimento & desenvolvimento
11.
Mol Plant Pathol ; 17(5): 703-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26416294

RESUMO

Common scab, caused by species from the bacterial genus Streptomyces, is an important disease of potato (Solanum tuberosum) crops worldwide. Early tuberization is a critical period for pathogen infection; hence, studies of host gene expression responses during this developmental stage can be important to expand our understanding of the infection process and to identify putative resistance genes. In an infection experiment with the highly susceptible potato cultivar Saturna and the relatively resistant cultivar Beate, transcription profiles were obtained by RNA sequencing at two developmental stages: the early hook stage and the early tuber formation stage. Our results indicate that 'Beate' mounts an early and sustained response to infection by S. turgidiscabies, whereas the defence response by 'Saturna' ceases before the early tuber formation stage. Most pronounced were the putative candidate defence-associated genes uniquely expressed in 'Beate'. We observed an increase in alternative splicing on pathogen infection at the early hook stage for both cultivars. A significant down-regulation of genes involved in the highly energy-demanding process of ribosome biogenesis was observed for the infected 'Beate' plants at the early hook stage, which may indicate an allocation of resources that favours the expression of defence-related genes.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Streptomyces/fisiologia , Transcrição Gênica , Processamento Alternativo/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Ontologia Genética , Doenças das Plantas/microbiologia , Tubérculos/genética , Tubérculos/microbiologia
12.
Front Plant Sci ; 6: 826, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528299

RESUMO

To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative "omic" approaches were applied to Fragaria × ananassa Duch. 'Korona.' Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1-10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, 'Korona' showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of 'Korona' are consistent with a moderately cold tolerant plant.

13.
PLoS One ; 10(9): e0137746, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398886

RESUMO

The cultivated strawberry (Fragaria ×ananassa Duch.) is an allo-octoploid considered difficult to disentangle genetically due to its four relatively similar sub-genomic chromosome sets. This has been alleviated by the recent release of the strawberry IStraw90 whole genome genotyping array. However, array resolution relies on the genotypes used in the array construction and may be of limited general use. SNP detection based on reduced genomic sequencing approaches has the potential of providing better coverage in cases where the studied genotypes are only distantly related from the SNP array's construction foundation. Here we have used double digest restriction-associated DNA sequencing (ddRAD) to identify SNPs in a 145 seedling F1 hybrid population raised from the cross between the cultivars Sonata (♀) and Babette (♂). A linkage map containing 907 markers which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of the species. Comparing the physical span of the SNP markers with the F. vesca genome sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F. × ananassa genome. Here, we have developed the first linkage map for F. × ananassa using ddRAD and show that this technique and other related techniques are useful tools for linkage map development and downstream genetic studies in the octoploid strawberry.


Assuntos
Mapeamento Cromossômico , Mapeamento por Restrição , Análise de Sequência de DNA , Segregação de Cromossomos , Cruzamentos Genéticos , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Ligação Genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único/genética
14.
Planta ; 237(1): 265-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23014928

RESUMO

The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT50) ranged from -4.7 to -12.0 °C between the genotypes. Among the F. vesca genotypes, the LT50 varied from -7.7 °C to -12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT50) -7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT50 estimates and the expression of ADH and total dehydrins were highly correlated (r(adh) = -0.87, r (dehyd) = -0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT50 estimates early in the acclimation period, only galactinol proved to be a good LT50 predictor after 28 days of acclimation (r(galact) = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry.


Assuntos
Álcool Desidrogenase/metabolismo , Temperatura Baixa , Fragaria/metabolismo , Proteínas de Plantas/metabolismo , Aclimatação , Álcool Desidrogenase/genética , Altitude , Western Blotting , Análise por Conglomerados , Diploide , Fragaria/genética , Congelamento , Cromatografia Gasosa-Espectrometria de Massas , Genótipo , Modelos Lineares , Metabolômica/classificação , Metabolômica/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Análise de Componente Principal , Especificidade da Espécie
15.
Plant Physiol ; 159(4): 1787-805, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689892

RESUMO

To gain insight into the molecular basis contributing to overwintering hardiness, a comprehensive proteomic analysis comparing crowns of octoploid strawberry (Fragaria × ananassa) cultivars that differ in freezing tolerance was conducted. Four cultivars were examined for freeze tolerance and the most cold-tolerant cultivar ('Jonsok') and least-tolerant cultivar ('Frida') were compared with a goal to reveal how freezing tolerance is achieved in this distinctive overwintering structure and to identify potential cold-tolerance-associated biomarkers. Supported by univariate and multivariate analysis, a total of 63 spots from two-dimensional electrophoresis analysis and 135 proteins from label-free quantitative proteomics were identified as significantly differentially expressed in crown tissue from the two strawberry cultivars exposed to 0-, 2-, and 42-d cold treatment. Proteins identified as cold-tolerance-associated included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis-related proteins, and flavonoid pathway proteins. A number of proteins were newly identified as associated with cold tolerance. Distinctive mechanisms for cold tolerance were characterized for two cultivars. In particular, the 'Frida' cold response emphasized proteins specific to flavonoid biosynthesis, while the more freezing-tolerant 'Jonsok' had a more comprehensive suite of known stress-responsive proteins including those involved in antioxidation, detoxification, and disease resistance. The molecular basis for 'Jonsok'-enhanced cold tolerance can be explained by the constitutive level of a number of proteins that provide a physiological stress-tolerant poise.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Fragaria/fisiologia , Proteômica/métodos , Aclimatação/genética , Antioxidantes/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Análise por Conglomerados , Cruzamentos Genéticos , Resistência à Doença , Eletroforese em Gel Bidimensional , Flavonoides/metabolismo , Fragaria/genética , Fragaria/metabolismo , Fragaria/microbiologia , Congelamento , Regulação da Expressão Gênica de Plantas , Inativação Metabólica , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Propanóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem
16.
Phytochemistry ; 77: 99-109, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22370221

RESUMO

Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vescaL.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype.


Assuntos
Resposta ao Choque Frio , Fragaria/metabolismo , Aclimatação , Diploide , Fragaria/genética , Fragaria/fisiologia , Congelamento , Cromatografia Gasosa-Espectrometria de Massas , Marcadores Genéticos , Genótipo , Redes e Vias Metabólicas , Metaboloma
17.
Plant Cell ; 20(7): 1786-804, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18599582

RESUMO

The Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors. Suppression of variegation in the first line, TAG-FN, was caused by disruption of the nuclear gene (SUPPRESSOR OF VARIEGATION1 [SVR1]) for a chloroplast-localized homolog of pseudouridine (Psi) synthase, which isomerizes uridine to Psi in noncoding RNAs. svr1 single mutants were epistatic to var2, and they displayed a phenotypic syndrome that included defects in chloroplast rRNA processing, reduced chloroplast translation, reduced chloroplast protein accumulation, and elevated chloroplast mRNA levels. In the second line (TAG-IE), suppression of variegation was caused by a lesion in SVR2, the gene for the ClpR1 subunit of the chloroplast ClpP/R protease. Like svr1, svr2 was epistatic to var2, and clpR1 mutants had a phenotype that resembled svr1. We propose that an impairment of chloroplast translation in TAG-FN and TAG-IE decreased the demand for VAR2 activity during chloroplast biogenesis and that this resulted in the suppression of var2 variegation. Consistent with this hypothesis, var2 variegation was repressed by chemical inhibitors of chloroplast translation. In planta mutagenesis revealed that SVR1 not only played a role in uridine isomerization but that its physical presence was necessary for proper chloroplast rRNA processing. Our data indicate that defects in chloroplast rRNA processing are a common, but not universal, molecular phenotype associated with suppression of var2 variegation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Teste de Complementação Genética , Hidroliases/genética , Hidroliases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
J Biol Chem ; 278(42): 40882-9, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12917402

RESUMO

The ERD14 protein (early response to dehydration) is a member of the dehydrin family of proteins which accumulate in response to dehydration-related environmental stresses. Here we show the Arabidopsis dehydrin, ERD14, possesses ion binding properties. ERD14 is an in vitro substrate of casein kinase II; the phosphorylation resulting both in a shift in apparent molecular mass on SDS-PAGE gels and increased calcium binding activity. The phosphorylated protein bound significantly more calcium than the nonphosphorylated protein, with a dissociation constant of 120 microm and 2.86 mol of calcium bound per mol of protein. ERD14 is phosphorylated by extracts of cold-treated tissues, suggesting that the phosphorylation status of this protein might be modulated by cold-regulated kinases or phosphatases. Calcium binding properties of ERD14 purified from Arabidopsis extracts were comparable with phosphorylated Escherichia coli-expressed ERD14. Approximately 2 mol of phosphate were incorporated per mol of ERD14, indicating a minimum of two phosphorylation sites. Western blot analyses confirmed that threonine and serine are possible phosphorylation sites on ERD14. Utilizing matrix assisted laser desorption ionization-time of flight/mass spectrometry we identified five phosphorylated peptides that were present in both in vivo and in vitro phosphorylated ERD14. Our results suggest that the polyserine (S) domain is most likely the site of phosphorylation in ERD14 responsible for the activation of calcium binding.


Assuntos
Proteínas de Arabidopsis/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Sítios de Ligação , Western Blotting , Cálcio/metabolismo , Cátions , Clonagem Molecular , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Íons , Espectrometria de Massas , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
19.
Plant Physiol ; 130(2): 675-87, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12376635

RESUMO

A vacuole membrane-associated calcium-binding protein with an apparent mass of 45 kD was purified from celery (Apium graveolens). This protein, VCaB45, is enriched in highly vacuolate tissues and is located within the lumen of vacuoles. Antigenically related proteins are present in many dicotyledonous plants. VCaB45 contains significant amino acid identity with the dehydrin family signature motif, is antigenically related to dehydrins, and has a variety of biochemical properties similar to dehydrins. VCaB45 migrates anomalously in sodium dodecyl sulfate-polyacrylamide gel electrophoresis having an apparent molecular mass of 45 kD. The true mass as determined by matrix-assisted laser-desorption ionization time of flight was 16.45 kD. VCaB45 has two characteristic dissociation constants for calcium of 0.22 +/- 0.142 mM and 0.64 +/- 0.08 mM, and has an estimated 24.7 +/- 11.7 calcium-binding sites per protein. The calcium-binding properties of VCaB45 are modulated by phosphorylation; the phosphorylated protein binds up to 100-fold more calcium than the dephosphorylated protein. VCaB45 is an "in vitro" substrate of casein kinase II (a ubiquitous eukaryotic kinase), the phosphorylation resulting in a partial activation of calcium-binding activity. The vacuole localization, calcium binding, and phosphorylation of VCaB45 suggest potential functions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Apium/genética , Apium/metabolismo , Western Blotting , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotransferases/metabolismo , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA