Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 22044-22055, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39006767

RESUMO

Alzheimer's disease (AD) is a fatal neurological disorder that causes cognitive and memory function to deteriorate. A critical pathogenic event that speeds up the development of AD is the interaction between dysfunctional microglia and amyloid-ß (Aß). We have developed a hybrid nanocomposite material to treat AD by normalizing the dysfunctional microglia. The material is based on carboxymethylcellulose (CMC) encapsulated fingolimod, siRNA, and zinc oxide (ZnO) with variable loading (CMC-Fi-siRNA@ZnO a-d ). The material was characterized using different techniques including FTIR, XRD, thermal analysis, SEM with EDX, and TEM micrographs. The chemical structure was confirmed by FTIR and XRD analyses, which indicated the successful integration of ZnO nanoparticles (NPs) into the polymer matrix, signifying a well-formed composite structure. The thermal stability order at 10% weight loss was CMC-Fi-siRNA@ZnO c > CMC-Fi-siRNA@ZnO b > CMC-Fi-siRNA@ZnO d > CMC-Fi-siRNA@ZnO a . The CMC-Fi-siRNA@ZnO d dramatically alleviates the priming of microglia by lowering the level of proinflammatory mediators and increasing the secretion of BDNF. This considerably improves the phagocytosis of Aß. In the cell viability test in immortalized microglia cells (IMG), the hybrid nanocomposite (NP) exhibited no significant effect on cell survival after 48 hours of incubation. The NP also decreased the cytotoxicity caused by Aß. Therefore, the CMC-hybrid NP has high potential as a drug delivery system in the development of therapeutic strategies for AD.

2.
RSC Adv ; 14(3): 1757-1781, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192311

RESUMO

Multicomponent polymerization (MCP) is an innovative field related to polymer-based chemistry that offers numerous advantages derived from multicomponent reactions (MCRs). One of the key advantages of MCP is its ability to achieve high efficiency. Additionally, MCP offers other advantages, including operational simplicity, mild reaction conditions, and atom economy. MCP is a versatile technique that is used for synthesizing a wide range of analogs from several classes of heterocyclic compounds. The ring structures of heterocyclic polymers give them different mechanical, photophysical, and electrical properties to other types of polymers. Because of their unique properties, heterocyclic polymers have been widely utilized in various significant applications. MCRs are a type of chemical reaction that can be used to synthesize a wide variety of compounds in a single pot, which allows researchers to quickly assemble libraries of compounds. The development of MCPs from MCRs has made it easier to access a library of polymers with tunable structures. However, MCPs related to alkynes or acetylene triple bonds have more potential. In this review study, we provide an overview of the synthesis of heteroatom-functional polymers and alkyne-based development or other reactions such as Cu-catalyzed, catalyst-free, MCCP, MCTPs, green monomers, A3 coupling reactions, Passerini reactions, and sequence- and controlled-multicomponent polymerization. The up-to-date progress provides a convenient and efficient kind of approach related to heteroatoms and MCP synthesis, and perspectives in terms of future directions are also discussed in the study.

3.
Bioengineering (Basel) ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978670

RESUMO

Hybrid materials are classified as one of the most highly important topics that have been of great interest to many researchers in recent decades. There are many species that can fall under this category, one of the most important of which contain biopolymeric materials as a matrix and are additionally reinforced by different types of carbon sources. Such materials are characterized by many diverse properties in a variety industrial and applied fields but especially in the field of biomedical applications. The biopolymeric materials that fall under this label are divided into natural biopolymers, which include chitosan, cellulose, and gelatin, and industrial or synthetic polymers, which include polycaprolactone, polyurethane, and conducting polymers of variable chemical structures. Furthermore, there are many types of carbon nanomaterials that are used as enhancers in the chemical synthesis of these materials as reinforcement agents, which include carbon nanotubes, graphene, and fullerene. This research investigates natural biopolymers, which can be composed of carbon materials, and the educational and medical applications that have been developed for them in recent years. These applications include tissue engineering, scaffold bones, and drug delivery systems.

4.
Biomedicines ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979948

RESUMO

The hybridization between polymers and carbon materials is one of the most recent and crucial study areas which abstracted more concern from scientists in the past few years. Polymers could be classified into two classes according to the source materials synthetic and natural. Synthetic polymeric materials have been applied over a floppy zone of industrial fields including the field of biomedicine. Carbon nanomaterials including (fullerene, carbon nanotubes, and graphene) classified as one of the most significant sources of hybrid materials. Nanocarbons are improving significantly mechanical properties of polymers in nanocomposites in addition to physical and chemical properties of the new materials. In all varieties of proposed bio-nanocomposites, a considerable improvement in the microbiological performance of the materials has been explored. Various polymeric materials and carbon-course nanofillers were present, along with antibacterial, antifungal, and anticancer products. This review spots the light on the types of synthetic polymers-based carbon materials and presented state-of-art examples on their application in the area of biomedicine.

5.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365762

RESUMO

Recently, the contribution of earthworms to plastic degradation and their capability to swallow smaller plastic fragments, known as microplastics, has been emphasized. The worm physically changes the size of microplastics and enhances microbial activities to increase the possibility of degradation. However, no research has shown that earthworms can chemically degrade microplastics to an element form, CO2 or H2O. In this review, previous research has been thoroughly explored to analyse the role that earthworms could play in plastic degradation in the soil. Earthworms can significantly affect the physical characteristics of plastics. However, earthworms' abilities to chemically degrade or change the chemical structure of plastics and microplastics have not been observed. Additionally, earthworms exhibit selective feeding behaviour, avoiding areas containing a high plastics concentration and rejecting plastics. Consequently, earthworms' abilities to adapt to the microplastics in soil in the environment can cause a problem. Based on this review, the challenges faced in earthworm application for plastic degradation are mostly expected to be associated with the toxicity and complexity of the plastic material and environmental factors, such as the moisture content of the soil and its temperature, microbial population, and feeding method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA