Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359557

RESUMO

Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 µM) and NO (100 µM) in mitigating the adverse effect of AsV (53 µM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress.


Assuntos
Arsênio , Compostos Heterocíclicos com 3 Anéis , Lactonas , Resiliência Psicológica , Solanum lycopersicum , Antioxidantes/metabolismo , Plântula/metabolismo , Óxido Nítrico/metabolismo , Arsênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Peróxido de Hidrogênio/metabolismo
2.
Environ Pollut ; 323: 121173, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36740162

RESUMO

Contamination of soils with chromium (Cr) jeopardized agriculture production globally. The current study was planned with the aim to better comprehend how melatonin (Mel) and hydrogen sulfide (H2S) regulate antioxidant defense system, potassium (K) homeostasis, and nitrogen (N) metabolism in tomato seedlings under Cr toxicity. The data reveal that application of 30 µM Mel to the seedlings treated with 25 µM Cr has a positive effect on H2S metabolism that resulted in a considerable increase in H2S. Exogenous Mel improved phytochelatins content and H+-ATPase activity with an associated increase in K content as well. Use of tetraethylammonium chloride (K+-channel blocker) and sodium orthovanadate (H+-ATPase inhibitor) showed that Mel maintained K homeostasis through regulating H+-ATPase activity under Cr toxicity. Supplementation of the stressed seedlings with Mel substantially scavenged excess reactive oxygen species (ROS) that maintained ROS homeostasis. Reduced electrolyte leakage and lipid peroxidation were additional signs of Mel's ROS scavenging effects. In addition, Mel also maintained normal functioning of nitrogen (N) metabolism and ascorbate-glutathione (AsA-GSH) system. Improved level of N fulfilled its requirement for various enzymes that have induced resilience during Cr stress. Additionally, the AsA-GSH cycle's proper operation maintained redox equilibrium, which is necessary for the biological system to function normally. Conversely, 1 mM hypotaurine (H2S scavenger) abolished the Mel-effect and again Cr-induced impairment on the above-mentioned parameters was observed even in presence of Mel. Therefore, based on the observed findings, we concluded that Mel needs endogenous H2S to alleviate Cr-induced impairments in tomato seedlings.


Assuntos
Sulfeto de Hidrogênio , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Cromo/toxicidade , Cromo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Plântula , Nitrogênio/metabolismo
3.
Environ Pollut ; 290: 117953, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438168

RESUMO

Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.


Assuntos
Arsênio , Sulfeto de Hidrogênio , Vicia faba , Arsênio/toxicidade , Cisteína , Molibdênio/toxicidade , Nitrogênio , Plântula
4.
Plant Cell Rep ; 40(8): 1543-1564, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34142217

RESUMO

KEY MESSAGE: Exogenous potassium (K+) and endogenous hydrogen sulfide (H2S) synergistically alleviate drought stress through regulating H+-ATPase activity, sugar metabolism and redox homoeostasis in tomato seedlings. Present work evaluates the role of K+ in the regulation of endogenous H2S signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to drought stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K+ content which was associated with reduced H+-ATPase activity. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K+ channel blocker) suggests that exogenous K+ stimulated H+-ATPase activity that further regulated endogenous K+ content in tomato seedlings subjected to drought stress. Moreover, reduction in H+-ATPase activity by hypotaurine (HT; H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K+ content enhanced the biosynthesis of H2S through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K+ effectively neutralized drought stress by regulating sugar metabolism and redox homoeostasis that resulted in osmotic adjustment, as witnessed by reduced water loss, and improved hydration level of the stressed seedlings. The integrative role of endogenous H2S in K+ homeostasis was validated using HT and TEA which weakened the protection against drought stress induced impairments. In conclusion, exogenous K+ and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K+ homeostasis. Thus, present work reveals that K+ and H2S crosstalk is essential for modulation of drought stress tolerance in tomato seedlings.


Assuntos
Antioxidantes/metabolismo , Desidratação , Sulfeto de Hidrogênio/metabolismo , Potássio/metabolismo , Solanum lycopersicum/fisiologia , Anidrases Carbônicas/metabolismo , Clorofila/metabolismo , Secas , Enzimas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/fisiologia , Açúcares/metabolismo
5.
Physiol Plant ; 173(1): 276-286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33826752

RESUMO

In this study, we have explored the possible role of ascorbic acid (ASC) and glutathione (GSH) in alleviating arsenate (AsV ) toxicity in brinjal roots. Moreover, we have also focused our attention on the possible involvement of endogenous nitric oxide (NO) in accomplishing this task. AsV treatment negatively impacts the length and fresh weight of roots and shoots as well as the dry weight and fitness of roots, and this was accompanied by greater As accumulation in roots and shoots of brinjal. AsV treatment also declined the endogenous NO level by inhibiting Nitric Oxide Synthase-like (NOS-like) activity. Furthermore, AsV stimulated oxidative stress markers, caused protein damage by their carbonylation due to downregulation in antioxidants [particularly ascorbate (AsA)-GSH cycle], leading to disturbed cellular redox status. This, collectively, led to root cell death in brinjal. However, the addition of either ASC or GSH rescued brinjal roots from the toxic effects of AsV in. Interestingly, lycorine (an inhibitor of ASC biosynthesis) further increased AsV toxicity, while ASC rescued its effects. Moreover, buthionine sulphoximine (BSO, an inhibitor of GSH biosynthesis) interestingly increased further AsV toxicity, while GSH rescued the plant from the As toxic effects. An interesting notion of this study was that GSH rescued the toxic effect of lycorine, while ASC rescued the toxic effect of BSO, though the AsV toxicity mediated by either ASC or GSH was always accompanied by high endogenous NO level and NOS-like activity. All together, these results suggest that ASC and GSH independently mitigate AsV toxicity in brinjal roots, but both might be dependent on endogenous NO for accomplishing the AsV toxicity alleviatory tasks.


Assuntos
Glutationa , Solanum melongena , Antioxidantes , Arseniatos/toxicidade , Ácido Ascórbico , Glutationa/metabolismo , Óxido Nítrico , Estresse Oxidativo , Raízes de Plantas/metabolismo
6.
Plant Physiol Biochem ; 159: 211-225, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385704

RESUMO

Present investigation reports the role of calcium (Ca2+) and hydrogen sulfide (H2S) crosstalk associated with Vigna radiata seedlings subjected to K+ deficient conditions under short-term (24 h) and long-term (72 h) NaCl stress. Perusal of the data reveals that under short-term NaCl stress an initial decline in K+ level led to the elevation in Ca2+ and H2S levels along with improvement in antioxidant system and reduction in reactive oxygen species (ROS) production. Under long-term NaCl stress a further decline in K+ content was deleterious that led to a lower K+/Na+ ratio. This was followed by reduction in antioxidant system along with excessive accumulation of ROS and methylglyoxal content, and increased membrane damage. However, supplementation of the seedling roots with Ca2+ enhanced biosynthesis of H2S through enhancing cysteine pool. The present findings suggest that synergistic action of Ca2+ and H2S induced the activity of H+-ATPase that created H+ gradient which in turn induced Na+/H+ antiport system that accelerated K+ influx and Na+ efflux. All of these together contributed to a higher K+/Na+ ratio, activation of antioxidative defense system, and maintenance of redox homeostasis and membrane integrity in Ca2+-supplemented stressed seedlings. Role of Ca2+ and H2S in the regulation of Na+/H+ antiport system was validated by the use of sodium orthovanadate (plasma membrane H+-ATPase inhibitor), tetraethylammonium chloride (K+ channel blocker), and amiloride (Na+/H+ antiporter inhibitor). Application of Ca2+-chelator EGTA (ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) and H2S scavenger hypotaurine abolished the effect of Ca2+, suggesting the involvement of Ca2+ and H2S in the alleviation of NaCl stress. Moreover, use of EGTA and HT also substantiates the downstream functioning of H2S during Ca2+-mediated regulation of plant adaptive responses to NaCl stress. To sum up, present findings reveal the association of Ca2+ and H2S signaling in the regulation of ion homeostasis and antioxidant defense during K+-deficient NaCl stress.


Assuntos
Cálcio , Sulfeto de Hidrogênio , Raízes de Plantas , Vigna , Antioxidantes/metabolismo , Cálcio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Transporte de Íons , Raízes de Plantas/fisiologia , Potássio/metabolismo , Estresse Salino/fisiologia , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Vigna/fisiologia
7.
Physiol Plant ; 173(1): 45-57, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32656764

RESUMO

Metal toxicity in crop plants is a matter of scientific concern. Therefore, in recent years efforts have been made to minimize metal toxicity in crop plants. Out of various strategies, priming of seedlings with certain chemicals, like e.g. donors of signaling molecules, nutrients, metabolites or plant hormones has shown encouraging results. However, mechanisms related with the priming-induced mitigation of metal toxicity are still poorly known. Hence, we have tested the potential of 2-oxoglutarate (2-OG) priming in enhancing the arsenate (AsV ) toxicity tolerance in tomato seedlings along with deciphering the probable role of nitric oxide (NO) in accomplishing this task. Arsenate decreased growth, endogenous NO and nitric oxide synthase-like activity but enhanced the accumulation of As, which collectively led to root cell death. Arsenate toxicity also decreased some photosynthetic characteristics (i.e. Fv /Fm, qP, Fv /F0 and Fm /F0 , and total chlorophyll content) but enhanced NPQ. However, priming with 2-OG alleviated the toxic effect of AsV on growth, endogenous NO, cell death and photosynthesis. Moreover, arsenate inhibited the activities of enzymes of nitrogen metabolism (i.e. nitrate reductase, nitrite reductase, glutamine synthetase and glutamine 2-oxoglutarate aminotransferase) but increased the activity of glutamate dehydrogenase and NH4 + content. Superoxide radicals, hydrogen peroxide, lipid peroxidation, protein oxidation and membrane damage increased upon AsV exposure, but the antioxidant enzymes (i.e. superoxide dismutase, catalase and glutathione-S-transferase) showed differential responses. Overall, our results showed that 2-OG is capable of alleviating AsV toxicity in tomato seedlings but the involvement of endogenous NO is probably required.


Assuntos
Arsênio , Solanum lycopersicum , Antioxidantes , Ácidos Cetoglutáricos , Óxido Nítrico , Estresse Oxidativo , Fotossíntese , Plântula
8.
Plant Physiol Biochem ; 156: 278-290, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32987258

RESUMO

Hydrogen sulfide (H2S) and nitric oxide (NO) have been known to affect vast number of processes in plants under abiotic stresses. Also, calcium (Ca) works as a second messenger in plants, which underpins the abiotic stress-induced damage. However, the sequence of action of these signaling molecules against cadmium (Cd)-induced cellular oxidative damage remains unidentified. Therefore, we studied the synergistic actions and/or relationship of signaling molecules and Ca-dependent activation of tolerance mechanisms in Vigna radiata seedlings under Cd stress. The present study shows that exogenous Ca supplemented to Cd-stressed V. radiata seedlings reduced Cd accumulation and improved the activity of nitrate reductase, and L/D-cysteine desulfhydrase (LCD/DCD) that resulted in improved synthesis of NO and H2S content. Application of Ca also elevated the level of cysteine (Cys) by upregulating the activity of Cys-synthesizing enzymes serine acetyltransferase and O-acetylserine(thiol)lyase in Cd-stressed seedlings. Maintenance of Cys pool under Cd stress contributed to improved H2S content which together with Ca and NO improved antioxidant enzymes and components of ascorbate-glutathione (AsA-GSH) cycle. All these collectively regulated the activity of NADPH oxidase and glycolate oxidase, resulting in the inhibition of Cd-induced generation of reactive oxygen species. The elevated level of Cys also assisted the Cd-stressed seedlings in maintaining GSH pool which retained normal functioning of AsA-GSH cycle and led to enhanced content of phytochelatins coupled with reduced Cd content. The positive effect of these events manifested in an enhanced rate of photosynthesis, carbohydrate accumulation, and growth attributes of the plants. On the contrary, addition of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], H2S scavenger HT (Hypotaurine) and Ca-chelator EGTA (Ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) again developed a condition similar to stress and positive effect of the signaling molecules was abolished. The findings of the study postulate that Ca in association with NO and H2S mitigates Cd-induced impairment and enhances the tolerance of the V. radiata plants against Cd stress. The results of the study also substantiate that Ca acts both upstream as well as downstream of NO signals whereas, H2S acts downstream of Ca and NO during Cd-stress responses of the plants.


Assuntos
Cádmio/toxicidade , Cálcio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Vigna/metabolismo , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese
9.
Saudi J Biol Sci ; 27(9): 2444-2451, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32884428

RESUMO

Amygdalin a naturally occurring compound, predominantly in the bitter kernels of apricot, almond, apple and other members of Rosaceae family. Though, amygdalin is used as an alternative therapy to treat various types of cancer but its role in cancer pathways has rarely been explored yet. Therefore, present study was intended with the aim to investigate the alleged anti-cancerous effects of amygdalin specifically on PI3K-AKT-mTOR and Ras pathways of cancer in human body. Computational modelling and simulation techniques were used to assess the effect of amygdalin on PI3K-AKT-mTOR and Ras pathways using different level of dosage. It was observed that amygdalin had direct and substantial contribution to regulate PI3K-mTOR activities on threshold levels while the other caner pathways were effected indirectly. Consequently, amygdalin is a down-regulator of a cancer within a specified amount and contribute considerably to reduce various types of cancer in human. Furthermore, in-vitro and in-vivo analyses of amygdalin could be of helpful to authenticate its pharmacological effects.

10.
Saudi J Biol Sci ; 27(6): 1475-1481, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32489283

RESUMO

Various metabolites exist in the medicinal plants have lot of potential to cure various diseases and disorders. Plants such as, Vetiveria zizanioides, Trichosanthes cucumerina, and Mollugo cerviana were collected from Western Ghats, Tamilnadu, India. Phytochemicals were extracted from these plants using various organic solvents and tested against Gram-positive and Gram-negative bacteria. The phytochemicals such as, carbohydrate, alkaloids, steroids, saponins, flavonoids and tannin were detected from these medicinal plants. Among the extracts, methanol showed potent activity and this solvent was used to extract polyherbal medicinal plants. Methanol extract of V. zizanioides was found to be highly active against E. coli (27 ± 2 mm), P. mirabilis (19 ± 3 mm) and B. subtilis (18 ± 2 mm). Ethyl acetate extract showed high activity against E. coli (24 ± 2 mm), P. mirabilis (22 ± 3 mm) and B. subtilis (20 ± 1 mm). These three plants were taken at 1:1:1 ratio and extracted with methanol at 1:10 ratio and synergistic activity was tested against bacterial pathogens. Synergistic activity of polyherbal extract was analyzed. The extracted crude herbal medicine was found to be effective against Staphylococcus aureus, E. coli, Enterbacter sp., Pseudomonas aeruginosa, Bacillus subtilis and Proteus mirabilis. The zone of inhibition was 33 ± 3 mm, 17 ± 2 mm, 22 ± 2 mm, 40 ± 2 mm, 33 ± 1 mm and 38 ± 2 mm zone of inhibition against E. coli, S. aureus, P. aeruginosa, P. mirabilis, B. subtilis and Enterobacter sp. Polyherbal extract was found to be highly effective against P. mirabilis and Enterobacter sp. MIC values of polyherbal extract ranged from 29 ± 2.5 µg/ml to 34 ± 2.5 µg/ml. MIC value was found to be less against P. mirabilis and was high against S. aureus. Antioxidant property varied between 49 ± 3% and 95.3 ± 2%. At 20 µg/ml antioxidant activity was reported as 49 ± 3% and it was increased at higher concentrations of polyherbal extract. Two cell lines (HeLa and MCF cell lines) were selected to analyze cytotoxic activity of polyherbal extract. The methanol extract of polyherbal fraction showed cytotoxicity against these two cell lines. The LC50 value was 467 ± 2.9 µg/ml against HeLa cell line and >800 µg/ml against MCF-7 cell lines. The polyherbal extract showed antibacterial, antioxidant and anticancer activities.

11.
J Hazard Mater ; 398: 122882, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516727

RESUMO

The interplay between melatonin (Mel) and calcium (Ca2+) in enhancing tolerance to metalloid toxicity and underlying physiological and biochemical mechanisms of this relationship still remains unknown. The present study reveals that the signaling molecules Mel and/or Ca2+ enhanced tolerance of Vicia faba (cv. Tara) plant to metalloid arsenic (As) toxicity. However, a combination of Mel and Ca2+ was more efficient than alone. Plants grew with As exhibited enhanced hydrogen peroxide, superoxide anion, electrolyte leakage, lipid peroxidation together with increased reactive oxygen species (ROS) producing enzymes, such as NADPH oxidase and glycolate oxidase (GOX). On the contrary, an inhibition in chlorophyll (Chl) biosynthesis and gas exchange parameters (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration) was observed. Under As toxicity conditions, the application of Mel and Ca2+ synergistically suppressed the plants' program cell death features (nucleus condensation and nucleus fragmentation) in guard cells of stomata, DNA damage, and formation of ROS in guard cells, leaves and roots. Moreover, it enhanced gas exchange parameters and activity of enzymes involved in photosynthesis process (carbonic anhydrase and RuBisco), Chl biosynthesis (δ-aminolevulinic acid dehydratase), and decreased activity of Chl degrading enzyme (chlorophyllase) under As toxicity conditions. Our investigation evidently established that expression of ATP synthase, Ca2+-ATPase, Ca2+-DPKase, Hsp17.6 and Hsp40 was found maximum in the plants treated with Mel + Ca2+, resulting in higher tolerance of plants to As stress. Also, increased total soluble carbohydrates, cysteine, and Pro accumulation with increased Pro synthesizing enzyme (Δ1-pyrroline-5-carboxylate synthetase (P5CS) and decreased Pro degrading enzyme (proline dehydrogenase) in Mel + Ca2+ treated plants conferred As toxicity tolerance. The obtained results postulate strong evidence that the application of Mel along with Ca2+ enhances resilience against As toxicity by upregulating the activity of plasma membrane H+-ATPase, enzymes involved in antioxidant system, and ascorbate-glutathione pathway.


Assuntos
Arsênio , Melatonina , Antioxidantes , Arsênio/toxicidade , Cálcio , Clorofila , Fotossíntese , Folhas de Planta , Espécies Reativas de Oxigênio , Plântula
12.
Nitric Oxide ; 94: 95-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707015

RESUMO

Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.


Assuntos
Óxido Nítrico/farmacologia , Plântula/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Enxofre/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Enxofre/deficiência
13.
Ecotoxicol Environ Saf ; 180: 656-667, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31136876

RESUMO

Owing to the active use of rare-earth elements in many areas, it is necessary to study their behavior in the environment and their biological impact on plants. Despite the role of melatonin and sulfur in plant growth, development and abiotic stress tolerance; it is still not clear how they have a strong regulatory influence and synergistic effect on growth, physiological and biochemical characteristics of plants under different environmental stresses. Therefore, this study highlights how melatonin and sulfur together potentially involved in a reversal of lanthanum-inhibited photosynthetic and growth responses in tomato seedlings. Here, we reported that seedlings grown in a medium containing 150 µM lanthanum exhibited increased overproduction of reactive oxygen species (ROS) and lipid peroxidation together with increased Chlorophyll degradation, and activity of chlorophyllase, proline dehydrogenase and glycolate oxidase (GOx), and decreased photosynthesis and growth. However, the application of melatonin and sulfur showed significant responses on tomato seedlings, although the response of their combined treatment was more effective by further increasing photosynthesis and growth under lanthanum toxicity. Melatonin supplied with sulfur suppressed ROS formation, lipid peroxidation and activity of GOx, and increased photosynthesis by upregulating activities of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. Also, sulfur supplementation with melatonin to seedlings resulted in an elevation in the accumulation of Chl and proline by increasing δ-aminolevulinic acid and activity of δ-aminolevulinic acid dehydratase and Δ1-pyrroline-5-carboxylate synthetase activity. The administration of melatonin with sulfur substantially induced upregulation of enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) activities involved in the antioxidant system, thereby mitigating ROS-induced oxidative damage. Thus, this study provides strong evidence that melatonin and sulfur have strong regulatory influence and synergistic role in alleviating the adverse effect of lanthanum-toxicity by increasing photosynthesis and growth.


Assuntos
Poluentes Ambientais/toxicidade , Lantânio/toxicidade , Melatonina/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Enxofre/farmacologia , Antioxidantes/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
14.
Electron. j. biotechnol ; 30: 24-32, nov. 2017. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1021325

RESUMO

Background: Prosopis, or mesquite (Prosopis juliflora (Sw.) DC.), was introduced in Saudi Arabia several decades ago and is heavily used in street, roadside, and park plantations. It shows great adaptation to the prevailing climatic conditions such as high temperature, severe drought, and salinity and spreads naturally in many parts of the Kingdom. This research was conducted to isolate allergen proteins and biogenic amines from the pollen grains of P. juliflora genotypes in Saudi Arabia from two regions, namely Al-Qassim and Eastern regions. Results: The results showed that 18 different allergen proteins were detected in P. juliflora genotypes, with molecular weight ranging from 14 to 97 kDa. Moreover, P. juliflora genotypes from the two studied regions contained eight biogenic amines, namely histamine, tyramine, tryptamine, ß-phenylethylamine, butricine, codapherine, spermidine, and spermine. All genotypes from the Al-Qassim region were found to contain all eight amines, while in the Eastern region, histamine was absent in three genotypes, spermine was absent in six genotypes, and spermidine was absent in three genotypes. Genotypes B23, E20, and E21 had the lowest biogenic amine quantity. Conclusions: All identified proteins from mesquite trees from both regions (Eastern and Al-Qassim) cause allergies in patients who are sensitive to pollen grains. Bioamines, except histamine and tyramine, were recorded at varying concentrations in different genotypes.


Assuntos
Pólen/química , Aminas Biogênicas/isolamento & purificação , Alérgenos/isolamento & purificação , Prosopis , Proteínas de Plantas/isolamento & purificação , Histamina/isolamento & purificação , Tiramina/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Genótipo , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA