Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 313(1): R29-R34, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490452

RESUMO

The muscle metaboreflex is a powerful pressor reflex induced by the activation of chemically sensitive muscle afferents as a result of metabolite accumulation. During submaximal dynamic exercise, the rise in arterial pressure is primarily due to increases in cardiac output, since there is little systemic vasoconstriction. Indeed, in normal animals, we have often shown a small, but significant, peripheral vasodilation during metaboreflex activation, which is mediated, at least in part, by release of epinephrine and activation of vascular ß2-receptors. We tested whether this vasodilation is in part due to increased release of nitric oxide caused by the rise in cardiac output eliciting endothelium-dependent flow-mediated vasodilation. The muscle metaboreflex was activated via graded reductions in hindlimb blood flow during mild exercise with and without nitric oxide synthesis blockade [NG-nitro-l-arginine methyl ester (l-NAME); 5 mg/kg]. We assessed the role of increased cardiac output in mediating peripheral vasodilation via the slope of the relationship between the rise in nonischemic vascular conductance (conductance of all vascular beds excluding hindlimbs) vs. the rise in cardiac output. l-NAME increased mean arterial pressure at rest and during exercise. The metaboreflex-induced increases in mean arterial pressure were unaltered by l-NAME, whereas the increases in cardiac output and nonischemic vascular conductance were attenuated. However, the slope of the relationship between nonischemic vascular conductance and cardiac output was not affected by l-NAME, indicating that the rise in cardiac output did not elicit vasodilation via increased release of nitric oxide. Thus, although nitric oxide is intrinsic to the vascular tonus, endothelial-dependent flow-mediated vasodilation plays little role in the small peripheral vasodilation observed during muscle metaboreflex activation.


Assuntos
Condutividade Elétrica , Endotélio Vascular/fisiologia , Músculo Esquelético/fisiologia , Óxido Nítrico/metabolismo , Reflexo/fisiologia , Animais , Cães , Feminino , Masculino
2.
Am J Physiol Heart Circ Physiol ; 311(5): H1268-H1276, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614226

RESUMO

The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.


Assuntos
Pressão Arterial/fisiologia , Barorreflexo/fisiologia , Débito Cardíaco/fisiologia , Isquemia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Contração Miocárdica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Vasoconstrição/fisiologia , Animais , Artérias Carótidas , Cães , Feminino , Frequência Cardíaca , Membro Posterior/irrigação sanguínea , Masculino , Pressorreceptores , Reflexo
3.
Am J Physiol Heart Circ Physiol ; 309(12): H2145-51, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475591

RESUMO

Metabolite accumulation due to ischemia of active skeletal muscle stimulates group III/IV chemosensitive afferents eliciting reflex increases in arterial blood pressure and sympathetic activity, termed the muscle metaboreflex. We and others have previously demonstrated sympathetically mediated vasoconstriction of coronary, renal, and forelimb vasculatures with muscle metaboreflex activation (MMA). Whether MMA elicits vasoconstriction of the ischemic muscle from which it originates is unknown. We hypothesized that the vasodilation in active skeletal muscle with imposed ischemia becomes progressively restrained by the increasing sympathetic vasoconstriction during MMA. We activated the metaboreflex during mild dynamic exercise in chronically instrumented canines via graded reductions in hindlimb blood flow (HLBF) before and after α1-adrenergic blockade [prazosin (50 µg/kg)], ß-adrenergic blockade [propranolol (2 mg/kg)], and α1 + ß-blockade. Hindlimb resistance was calculated as femoral arterial pressure/HLBF. During mild exercise, HLBF must be reduced below a threshold level before the reflex is activated. With initial reductions in HLBF, vasodilation occurred with the imposed ischemia. Once the muscle metaboreflex was elicited, hindlimb resistance increased. This increase in hindlimb resistance was abolished by α1-adrenergic blockade and exacerbated after ß-adrenergic blockade. We conclude that metaboreflex activation during submaximal dynamic exercise causes sympathetically mediated α-adrenergic vasoconstriction in ischemic skeletal muscle. This limits the ability of the reflex to improve blood flow to the muscle.


Assuntos
Isquemia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Esforço Físico , Vasoconstrição/efeitos dos fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Arterial , Cães , Feminino , Membro Posterior/irrigação sanguínea , Masculino , Músculo Esquelético/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Prazosina/farmacologia , Propranolol/farmacologia , Reflexo , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA