Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(3): 33, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897507

RESUMO

KEY MESSAGE: Eleven wheat lines that are missing genes for the 1D-encoded omega-5 gliadins will facilitate breeding efforts to reduce the immunogenic potential of wheat flour for patients susceptible to wheat allergy. Efforts to reduce the levels of allergens in wheat flour that cause wheat-dependent exercise-induced anaphylaxis are complicated by the presence of genes encoding omega-5 gliadins on both chromosomes 1B and 1D of hexaploid wheat. In this study, we screened 665 wheat germplasm samples using gene specific DNA markers for omega-5 gliadins encoded by the genes on 1D chromosome that were obtained from the reference wheat Chinese Spring. Eleven wheat lines missing the PCR product corresponding to 1D omega-5 gliadin gene sequences were identified. Two of the lines contained the 1BL·1RS translocation. Relative quantification of gene copy numbers by qPCR revealed that copy numbers of 1D omega-5 gliadins in the other nine lines were comparable to those in 1D null lines of Chinese Spring, while copy numbers of 1B omega-5 gliadins were like those of Chinese Spring. 2-D immunoblot analysis of total flour proteins from the selected lines using a specific monoclonal antibody against the N-terminal sequence of omega-5 gliadin showed no reactivity in regions of the blots containing previously identified 1D omega-5 gliadins. Interestingly, RP-UPLC analysis of the gliadin fractions of the selected lines indicated that the expression of omega-1,2 gliadins was also significantly reduced in seven of the lines, implying that 1D omega-5 gliadin and 1D omega-1,2 gliadin genes are tightly linked on the Gli-D1 loci of chromosome 1D. Wheat lines missing the omega-5 gliadins encoded by the genes on 1D chromosome should be useful in future breeding efforts to reduce the immunogenic potential of wheat flour.


Assuntos
Farinha , Gliadina , Humanos , Gliadina/genética , Gliadina/metabolismo , Melhoramento Vegetal , Triticum/genética , Cromossomos/química , Cromossomos/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299329

RESUMO

The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography-tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the 'Aroona' cultivar and 12 'Aroona' near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for 'Aroona' and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in 'Aroona' and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.


Assuntos
Glutens/análise , Glutens/metabolismo , Triticum/metabolismo , Alelos , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional/métodos , Haplótipos , Peso Molecular , Melhoramento Vegetal/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Triticum/química , Triticum/genética
3.
Front Plant Sci ; 11: 600489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343602

RESUMO

The wheat gliadins are a complex group of flour proteins that can trigger celiac disease and serious food allergies. As a result, mutation breeding and biotechnology approaches are being used to develop new wheat lines with reduced immunogenic potential. Key to these efforts is the development of rapid, high-throughput methods that can be used as a first step in selecting lines with altered gliadin contents. In this paper, we optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and reversed-phase high-performance liquid chromatography (RP-HPLC) methods for the separation of gliadins from Triticum aestivum cv. Chinese Spring (CS). We evaluated the quality of the resulting profiles using the complete set of gliadin gene sequences recently obtained from this cultivar as well as a set of aneuploid lines in CS. The gliadins were resolved into 13 peaks by MALDI-TOF-MS. α- or γ-gliadins that contain abundant celiac disease epitopes and are likely targets for efforts to reduce the immunogenicity of flour were found in several peaks. However, other peaks contained multiple α- and γ-gliadins, including one peak with as many as 12 different gliadins. In comparison, separation of proteins by RP-HPLC yielded 28 gliadin peaks, including 13 peaks containing α-gliadins and eight peaks containing γ-gliadins. While the separation of α- and γ-gliadins gliadins achieved by RP-HPLC was better than that achieved by MALDI-TOF-MS, it was not possible to link peaks with individual protein sequences. Both MALDI-TOF-MS and RP-HPLC provided adequate separation of ω-gliadins. While MALDI-TOF-MS is faster and could prove useful in studies that target specific gliadins, RP-HPLC is an effective method that can be applied more broadly to detect changes in gliadin composition.

4.
Molecules ; 25(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971947

RESUMO

Because high-molecular-weight glutenin subunits (HMW-GS) are important contributors to wheat end-use quality, there is a need for high-throughput identification of HMW-GS in wheat genetic resources and breeding lines. We developed an optimized method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to distinguish individual HMW-GS by considering the effects of the alkylating reagent in protein extraction, solvent components, dissolving volume, and matrix II components. Using the optimized method, 18 of 22 HMW-GS were successfully identified in standard wheat cultivars by differences in molecular weights or by their associations with other tightly linked subunits. Interestingly, 1Bx7 subunits were divided into 1Bx7 group 1 and 1Bx7 group 2 proteins with molecular weights of about 82,400 and 83,000 Da, respectively. Cultivars containing the 1Bx7 group 2 proteins were distinguished from those containing 1Bx7OE using well-known DNA markers. HMW-GS 1Ax2* and 1Bx6 and 1By8 and 1By8*, which are difficult to distinguish due to very similar molecular weights, were easily identified using RP-HPLC. To validate the method, HMW-GS from 38 Korean wheat varieties previously evaluated by SDS-PAGE combined with RP-HPLC were analyzed by MALDI-TOF-MS. The optimized MALDI-TOF-MS method will be a rapid, high-throughput tool for selecting lines containing desirable HMW-GS for breeding efforts.


Assuntos
Glutens/análise , Glutens/química , Subunidades Proteicas/análise , Subunidades Proteicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triticum/química , Peso Molecular
5.
Proteome Sci ; 18: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774173

RESUMO

BACKGROUND: Within the complex wheat flour proteome, the gluten proteins have attracted most of the attention because of their importance in determining the functional properties of wheat flour doughs and their roles in human health conditions such as celiac disease and food allergies. However, certain non-gluten proteins also trigger immunological responses but may be present in flour in low amounts or obscured by the more abundant gluten proteins in two-dimensional gels of total protein preparations. METHODS: Non-gluten proteins were preferentially extracted from the flour with a dilute salt solution and separated by two-dimensional gel electrophoresis. Proteins in 173 gel spots were identified by tandem mass spectrometry after cleavage with trypsin or chymotrypsin. Transgenic wheat lines in which specific groups of gluten proteins were suppressed by RNA interference were used to estimate the amount of carry-over of gluten proteins in the salt-soluble protein fraction. RESULTS: Fifty-seven different types of non-gluten proteins were identified, including 14 types that are known or suspected immunogenic proteins. The predominant proteins in 18 gel spots were gluten proteins. Some of these also contained non-gluten proteins. Analysis of the salt-soluble proteins from a transgenic line in which omega-1,2 gliadins were eliminated by RNA interference indicated that certain omega-1,2 gliadins were present in large amounts in the salt-soluble fraction and obscured relatively small amounts of beta-amylase and protein disulfide isomerase. In comparison, analysis of a transgenic line in which alpha gliadins were absent revealed that glyceraldehyde-3 phosphate dehydrogenase was a moderately abundant protein that co-migrated with several alpha gliadins. CONCLUSIONS: In this study, we constructed a proteomic map of the non-gluten protein fraction of wheat flour from the US wheat Butte 86 that complements a proteomic map of the total flour proteins developed previously for the same cultivar. Knowing the identities of low abundance proteins in the flour as well as proteins that are hidden by some of the major gluten proteins on two-dimensional gels is critical for studies aimed at assessing the immunogenic potential of wheat flour and determining which wheat proteins that should be targeted in future gene editing experiments to reduce the immunogenic potential of wheat flour.

6.
Front Plant Sci ; 11: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161604

RESUMO

The alpha gliadins are a group of more than 20 proteins with very similar sequences that comprise about 15%-20% of the total flour protein and contribute to the functional properties of wheat flour dough. Some alpha gliadins also contain immunodominant epitopes that trigger celiac disease, a chronic autoimmune disease that affects approximately 1% of the worldwide population. In an attempt to reduce the immunogenic potential of wheat flour from the U.S. spring wheat cultivar Butte 86, RNA interference was used to silence a subset of alpha gliadin genes encoding proteins containing celiac disease epitopes. Two of the resulting transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry. Although the RNA interference construct was designed to target only some alpha gliadin genes, all alpha gliadins were effectively silenced in the transgenic plants. In addition, some off-target silencing of high molecular weight glutenin subunits was detected in both transgenic lines. Compensatory effects were not observed within other gluten protein classes. Reactivities of IgG and IgA antibodies from a cohort of patients with celiac disease toward proteins from the transgenic lines were reduced significantly relative to the nontransgenic line. Both mixing properties and SDS sedimentation volumes suggested a decrease in dough strength in the transgenic lines when compared to the control. The data suggest that it will be difficult to selectively silence specific genes within families as complex as the wheat alpha gliadins. Nonetheless, it may be possible to reduce the immunogenic potential of the flour and still retain many of the functional properties essential for the utilization of wheat.

7.
Funct Integr Genomics ; 20(1): 1-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31250230

RESUMO

Although the economic value of wheat flour is determined by the complement of gluten proteins, these proteins have been challenging to study because of the complexity of the major protein groups and the tremendous sequence diversity among wheat cultivars. The completion of a high-quality wheat genome sequence from the reference wheat Chinese Spring recently facilitated the assembly and annotation of a complete set of gluten protein genes from a single cultivar, making it possible to link individual proteins in the flour to specific gene sequences. In a proteomic analysis of total wheat flour protein from Chinese Spring using quantitative two-dimensional gel electrophoresis combined with tandem mass spectrometry, gliadins or low-molecular-weight glutenin subunits were identified as the predominant proteins in 72 protein spots. Individual spots were associated with 40 of 56 Chinese Spring gene sequences, including 16 of 26 alpha gliadins, 10 of 11 gamma gliadins, six of seven omega gliadins, one of two delta gliadins, and nine of ten LMW-GS. Most genes that were not associated with protein spots were either expressed at low levels in endosperm or encoded proteins with high similarity to other proteins. A wide range of protein accumulation levels were observed and discrepancies between transcript levels and protein levels were noted. This work together with similar studies using other commercial cultivars should provide new insight into the molecular basis of wheat flour quality and allergenic potential.


Assuntos
Gliadina/genética , Triticum/genética , Eletroforese em Gel Bidimensional , Farinha , Genoma de Planta , Gliadina/análise , Gliadina/química , Gliadina/metabolismo , Poliploidia , Proteômica , Padrões de Referência , Espectrometria de Massas em Tandem , Triticum/metabolismo
8.
Front Plant Sci ; 10: 580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143195

RESUMO

The omega-1,2 gliadins are a group of wheat gluten proteins that contain immunodominant epitopes for celiac disease (CD) and also have been associated with food allergies. To reduce the levels of these proteins in the flour, bread wheat (Triticum aestivum cv. Butte 86) was genetically transformed with an RNA interference plasmid that targeted a 141 bp region at the 5' end of an omega-1,2 gliadin gene. Flour proteins from two transgenic lines were analyzed in detail by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry. In one line, the omega-1,2 gliadins were missing with few other changes in the proteome. In the other line, striking changes in the proteome were observed and nearly all gliadins and low molecular weight glutenin subunits (LMW-GS) were absent. High molecular weight glutenin subunits (HMW-GS) increased in this line and those that showed the largest increases had molecular weights slightly less than those in the non-transgenic, possibly due to post-translational processing. In addition, there were increases in non-gluten proteins such as triticins, purinins, globulins, serpins, and alpha-amylase/protease inhibitors. Reactivity of flour proteins with serum IgG and IgA antibodies from a cohort of CD patients was reduced significantly in both transgenic lines. Both mixing time and tolerance were improved in the line without omega-1,2 gliadins while mixing properties were diminished in the line missing most gluten proteins. The data suggest that biotechnology approaches may be used to create wheat lines with reduced immunogenic potential in the context of gluten sensitivity without compromising end-use quality.

9.
BMC Plant Biol ; 18(1): 291, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463509

RESUMO

BACKGROUND: Omega-5 gliadins are a group of highly repetitive gluten proteins in wheat flour encoded on the 1B chromosome of hexaploid wheat. These proteins are the major sensitizing allergens in a severe form of food allergy called wheat-dependent exercise-induced anaphylaxis (WDEIA). The elimination of omega-5 gliadins from wheat flour through biotechnology or breeding approaches could reduce the immunogenic potential and adverse health effects of the flour. RESULTS: A mutant line missing low-molecular weight glutenin subunits encoded at the Glu-B3 locus was selected previously from a doubled haploid population generated from two Korean wheat cultivars. Analysis of flour from the mutant line by 2-dimensional gel electrophoresis coupled with tandem mass spectrometry revealed that the omega-5 gliadins and several gamma gliadins encoded by the closely linked Gli-B1 locus were also missing as a result of a deletion of at least 5.8 Mb of chromosome 1B. Two-dimensional immunoblot analysis of flour proteins using sera from WDEIA patients showed reduced IgE reactivity in the mutant relative to the parental lines due to the absence of the major omega-5 gliadins. However, two minor proteins showed strong reactivity to patient sera in both the parental and the mutant lines and also reacted with a monoclonal antibody against omega-5 gliadin. Analysis of the two minor reactive proteins by mass spectrometry revealed that both proteins correspond to omega-5 gliadin genes encoded on chromosome 1D that were thought previously to be pseudogenes. CONCLUSIONS: While breeding approaches can be used to reduce the levels of the highly immunogenic omega-5 gliadins in wheat flour, these approaches are complicated by the genetic linkage of different classes of gluten protein genes and the finding that omega-5 gliadins may be encoded on more than one chromosome. The work illustrates the importance of detailed knowledge about the genomic regions harboring the major gluten protein genes in individual wheat cultivars for future efforts aimed at reducing the immunogenic potential of wheat flour.


Assuntos
Alérgenos/imunologia , Farinha , Gliadina/imunologia , Triticum/imunologia , Hipersensibilidade a Trigo/imunologia , Alérgenos/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Eletroforese em Gel Bidimensional , Epitopos/genética , Epitopos/imunologia , Genoma de Planta , Gliadina/genética , Humanos , Imunoglobulina E/imunologia , Espectrometria de Massas , Mutação , Melhoramento Vegetal , Poliploidia , Triticum/genética
10.
Front Plant Sci ; 9: 818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971078

RESUMO

Wheat gliadins are a complex group of proteins that contribute to the functional properties of wheat flour doughs and contain epitopes that are relevant for celiac disease (CD) and wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, we extracted ethanol-soluble gliadin fractions from flour of the Korean bread wheat cultivar Keumkang. Proteins were separated by 2-dimensional gel electrophoresis (2-DE) using a pI range of 6-11 in the first dimension and subjected to tandem mass spectrometry. α-, γ-, and ω-gliadins were identified as the predominant proteins in 31, 28, and one 2-DE spot, respectively. An additional six ω-gliadins were identified in a separate experiment in which a pI range of 3-11 was used for protein separation. We analyzed the composition of CD- and WDEIA-relevant epitopes in the gliadin sequences from Keumkang flour, demonstrating the immunogenic potential of this cultivar. Detailed knowledge about the complement of gliadins accumulated in Keumkang flour provides the background necessary to devise either breeding or biotechnology strategies to improve the functional properties and reduce the adverse health effects of the flour.

11.
Front Plant Sci ; 9: 605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780400

RESUMO

The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

12.
Breed Sci ; 67(4): 398-407, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29085250

RESUMO

Two-dimensional gel electrophoresis (2-DGE) was used as a complement to SDS-PAGE to determine the allelic compositions of LMW-GS in 32 Korean wheat cultivars. Protein patterns generated by 2-DGE from each cultivar were compared to patterns from standard wheat cultivars for each allele. At the Glu-A3 locus, thirteen c, twelve d, three e (null), two g and two new alleles were identified. At the Glu-B3 locus, one b, nineteen d, four h, one i and five ad alleles were identified. At the Glu-D3 locus, twenty-three a, four b, four c and one l alleles were identified. When compared to results obtained previously using SDS-PAGE, there were discrepancies in the allelic designations of 10 of 32 cultivars (31%). While SDS-PAGE is a rapid and relatively simple method for assessing LMW-GS composition, the similar mobilities of the proteins makes it difficult to discriminate certain alleles. 2-DGE is a more complicated technique, but provides a more accurate picture of the complement of the LMW-GS in a given cultivar. In addition to providing essential information for wheat breeders, the 2-DGE reference maps generated in this study will make it possible to study the contributions of individual LMW-GS to flour quality.

13.
Molecules ; 22(7)2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28672820

RESUMO

The accurate identification of alleles for high-molecular weight glutenins (HMW-GS) is critical for wheat breeding programs targeting end-use quality. RP-HPLC methods were optimized for separation of HMW-GS, resulting in enhanced resolution of 1By and 1Dx subunits. Statistically significant differences in retention times (RTs) for subunits corresponding to HMW-GS alleles were determined using 16 standard wheat cultivars with known HMW-GS compositions. Subunits that were not identified unambiguously by RP-HPLC were distinguished by SDS-PAGE or inferred from association with linked subunits. The method was used to verify the allelic compositions of 32 Korean wheat cultivars previously determined using SDS-PAGE and to assess the compositions of six new Korean cultivars. Three cultivars contained subunits that were identified incorrectly in the earlier analysis. The improved RP-HPLC method combined with conventional SDS-PAGE provides for accurate, efficient and reliable identification of HMW-GS and will contribute to efforts to improve wheat end-use quality.


Assuntos
Glutens/química , Glutens/isolamento & purificação , Triticum/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Melhoramento Vegetal , Triticum/classificação
14.
Funct Integr Genomics ; 16(3): 269-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26882917

RESUMO

Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour.


Assuntos
Sequência de Aminoácidos/genética , Pão , Glutens/genética , Triticum/genética , Alelos , Eletroforese em Gel Bidimensional , Haplótipos/genética , Peso Molecular , Pseudogenes/genética , Espectrometria de Massas em Tandem
15.
J Agric Food Chem ; 63(42): 9323-32, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26447559

RESUMO

The ω5-gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which ω5-gliadin genes were silenced by RNA interference. Sera from 7 of 11 WDEIA patients showed greatly reduced levels of immunoglobulin E (IgE) reactivity to ω5-gliadins in both transgenic lines. However, these sera also showed low levels of reactivity to other gluten proteins. Sera from three patients showed the greatest reactivity to proteins other than ω5-gliadins, either high-molecular-weight glutenin subunits (HMW-GSs), α-gliadins, or non-gluten proteins. The complexity of immunological responses among these patients suggests that flour from the transgenic lines would not be suitable for individuals already diagnosed with WDEIA. However, the introduction of wheat lacking ω5-gliadins could reduce the number of people sensitized to these proteins and thereby decrease the overall incidence of this serious food allergy.


Assuntos
Anafilaxia/imunologia , Antígenos de Plantas/imunologia , Gliadina/imunologia , Plantas Geneticamente Modificadas/imunologia , Triticum/imunologia , Hipersensibilidade a Trigo/imunologia , Adulto , Anafilaxia/sangue , Antígenos de Plantas/análise , Antígenos de Plantas/genética , Exercício Físico , Feminino , Farinha/análise , Alimentos Geneticamente Modificados , Gliadina/análise , Gliadina/genética , Glutens/imunologia , Humanos , Imunoglobulina E/sangue , Masculino , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Triticum/química , Triticum/genética , Hipersensibilidade a Trigo/sangue
16.
J Proteome Res ; 14(1): 503-11, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25329597

RESUMO

While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat.


Assuntos
Antígenos/imunologia , Doença Celíaca/imunologia , Imunidade Humoral/imunologia , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Eletroforese em Gel Bidimensional , Epitopos , Humanos , Immunoblotting , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Espectrometria de Massas em Tandem
17.
BMC Plant Biol ; 14: 393, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539796

RESUMO

BACKGROUND: The end-use quality of wheat flour varies as a result of the growth conditions of the plant. Among the wheat gluten proteins, the omega-5 gliadins have been identified as a major source of environmental variability, increasing in proportion in grain from plants that receive fertilizer or are subjected to high temperatures during grain development. The omega-5 gliadins also have been associated with the food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). Recently, transgenic lines with reduced levels of omega-5 gliadins were developed using RNA interference (RNAi). These lines make it possible to determine whether changes in the levels of omega-5 gliadins in response to environmental conditions and agronomic inputs may be responsible for changes in flour end-use quality. RESULTS: Two transgenic wheat lines and a non-transgenic control were grown under a controlled temperature regimen with or without post-anthesis fertilizer and the protein composition of the resulting flour was analyzed by quantitative two-dimensional gel electrophoresis (2-DE). In one transgenic line, all 2-DE spots identified as omega-5 gliadins were substantially reduced without effects on other proteins. In the other transgenic line, the omega-5 gliadins were absent and there was a partial reduction in the levels of the omega-1,2 gliadins and the omega-1,2 chain-terminating gliadins as well as small changes in several other proteins. With the exception of the omega gliadins, the non-transgenic control and the transgenic plants showed similar responses to the fertilizer treatment. Protein contents of flour were determined by the fertilizer regimen and were similar in control and transgenic samples produced under each regimen while both mixing time and mixing tolerance were improved in flour from transgenic lines when plants received post-anthesis fertilizer. CONCLUSIONS: The data indicate that omega-5 gliadins have a negative effect on flour quality and suggest that changes in quality with the growth environment may be due in part to alterations in the levels of the omega gliadins. Because a known food allergen and one of the major sources of environmentally-induced variation in wheat flour protein composition has been eliminated, the transgenic lines may yield flour with both improved end-use quality and more consistent functionality when grown in different locations.


Assuntos
Antígenos de Plantas/metabolismo , Gliadina/metabolismo , Triticum/metabolismo , Culinária , Eletroforese em Gel Bidimensional , Fertilizantes , Plantas Geneticamente Modificadas , Triticum/genética
18.
Proteome Sci ; 12(1): 8, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24517725

RESUMO

BACKGROUND: Certain wheat gluten proteins form large protein polymers that are extractable in 0.5% SDS only after sonication. Although there is a strong relationship between the amounts of these polymers in the flour and bread-making quality, the protein components of these polymers have not been thoroughly investigated. RESULTS: Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication. Proteins were further separated by size exclusion chromatography (SEC) into monomeric and polymeric fractions and analyzed by quantitative two-dimensional gel electrophoresis (2-DE). When proteins in select 2-DE spots were identified by tandem mass spectrometry (MS/MS), overlapping spots from the different protein fractions often yielded different identifications. Most high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) partitioned into the polymer fractions, while most gliadins were found in the monomer fractions. The exceptions were alpha, gamma and omega gliadins containing odd numbers of cysteine residues. These proteins were detected in all fractions, but comprised the largest proportion of the SDS-extractable polymer fraction. Several types of non-gluten proteins also were found in the polymer fractions, including serpins, triticins and globulins. All three types were found in the largest proportions in the SDS-extractable polymer fraction. CONCLUSIONS: This is the first study to report the accumulation of gliadins containing odd numbers of cysteine residues in the SDS-extractable glutenin polymer fraction, supporting the hypothesis that these gliadins serve as chain terminators of the polymer chains. These data make it possible to formulate hypotheses about how protein composition influences polymer size and structure and provide a foundation for future experiments aimed at determining how environment affects glutenin polymer distribution. In addition, the analysis revealed additional layers of complexity to the wheat flour proteome that should be considered when evaluating quantitative 2-DE data.

19.
J Agric Food Chem ; 61(10): 2407-17, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23414243

RESUMO

Starch granule surface-associated proteins were separated by HPLC and identified by direct protein sequencing. Among the proteins identified was one that consisted of two polypeptide chains of 11 and 19 kDa linked by disulfide bonds. Sequencing of tryptic peptides from each of the polypeptides revealed similarities between some of the peptides and avenin-like b proteins encoded by partial cDNAs in NCBI. To identify a contiguous sequence that matched all of the peptides, contigs encoding three avenin-like b proteins were constructed from ESTs of the cultivar Butte 86. All peptide sequences were found in a protein encoded by one of these contigs that had not been identified previously. Protein and DNA sequences indicated that the two polypeptide chains were derived from a parent protein that had been cleaved at the C-terminal position of an asparagine residue. The name farinin is suggested for this protein and other avenin-like b proteins. Evolutionary relationships of the protein are discussed and a simple computer molecular model was constructed. On the basis of its sequence, the new protein was likely to be allergenic but unlikely to be active in celiac disease.


Assuntos
Endosperma/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Clonagem Molecular , Endosperma/química , Endosperma/metabolismo , Dados de Sequência Molecular , Peso Molecular , Família Multigênica , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Triticum/química , Triticum/metabolismo
20.
Proteome Sci ; 11(1): 8, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23432757

RESUMO

BACKGROUND: Flour quality is largely determined by the gluten proteins, a complex mixture of proteins consisting of high molecular weight-glutenin subunits (HMW-GS), low molecular weight-glutenin subunits (LMW-GS), and α-, γ-, and ω-gliadins. Detailed proteomic analyses of the effects of fertilizer and high temperature on individual gliadin and glutenin protein levels are needed to determine how these environmental factors influence flour quality. RESULTS: Wheat plants (Triticum aestivum L. cv. Butte 86) were grown in greenhouses under moderate and high temperature regimens with and without post-anthesis fertilizer. Quantitative two-dimensional gel electrophoresis was used to construct accumulation profiles in developing endosperm for the entire complement of gluten proteins identified previously by tandem mass spectrometry. Amounts of individual gliadins and glutenins were also determined in flour produced under each of the regimens. Under all environmental regimens, most HMW-GS, LMW-GS, γ- and ω-gliadins accumulated rapidly during early stages of grain development and leveled off during middle stages of development. A subset of LMW-GS showed a second distinct profile, accumulating throughout development, while α-gliadins showed a variety of accumulation profiles. In flour, fourteen distinct gluten proteins responded similarly to fertilizer, high temperature, and high temperature plus fertilizer. The majority of HMW-GS and ω-gliadins and some α-gliadins increased while two LMW-GS and a minor γ-gliadin decreased. Fertilizer did not influence gluten protein accumulation under high temperature conditions. Additionally, the effects of fertilizer and high temperature were not additive; very few changes were observed when plants that received fertilizer were subjected to high temperature. CONCLUSIONS: Although post-anthesis temperature and fertilizer have very different effects on grain development and yield, the two treatments elicit surprisingly similar effects on the accumulation of gluten proteins. The similarity of the responses to the different treatments is likely due to source-sink activities of nitrogen reserves in the wheat plant. Because each protein that showed a response in this study is linked to a gene sequence, the work sets the stage for transgenic studies that will better elucidate the roles of specific proteins in flour quality and in the response to the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA