Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(3): e0056921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34762518

RESUMO

Microbial genomes are being extensively studied using next-generation sequencing technologies in order to understand the changes that occur under different selection regimes. In this work, the number and type of mutations that have occurred in three Bradyrhizobium diazoefficiens USDA 110T strains under laboratory conditions and during selection for a more motile phenotypic variant were analyzed. Most of the mutations found in both processes consisted of single nucleotide polymorphisms, single nucleotide deletions or insertions. In the case of adaptation to laboratory conditions, half of the changes occurred within intergenic regions, and around 80% were insertions. When the more motile phenotypic variant was evaluated, eight single nucleotide polymorphisms and an 11-bp deletion were found, although none of them was directly related to known motility or chemotaxis genes. Two mutants were constructed to evaluate the 11-bp deletion affecting the alpha subunit of 2-oxoacid:acceptor oxidoreductase (AAV28_RS30705-blr6743). The results showed that this single deletion was not responsible for the enhanced motility phenotype. IMPORTANCE The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoefficiens genomes remain poorly studied. Only a few genome sequences of this important nitrogen-fixing species are available, and there are no genome-wide comparative analyses of related strains. In the present work, we sequenced and compared the genomes of strains derived from a parent strain, B. diazoefficiens USDA 110, that has undergone processes of repeated culture in the laboratory environment, or phenotypic selection toward antibiotic resistance and enhanced motility. Our results represent the first analysis in B. diazoefficiens that provides insights into the specific mutations that are acquired during these processes.


Assuntos
Bradyrhizobium/genética , Genoma Bacteriano , Adaptação Biológica , Bradyrhizobium/citologia , Bradyrhizobium/fisiologia , Genômica , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Simbiose
2.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468586

RESUMO

Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, has two independent flagellar systems: a single subpolar flagellum and several lateral flagella. Each flagellum is a very complex organelle composed of 30 to 40 different proteins located inside and outside the cell whereby flagellar gene expression must be tightly controlled. Such control is achieved by a hierarchy of regulators that ensure the timing of synthesis and the allocation of the different flagellar substructures. Previously, we analyzed the gene organization, expression, and function of the lateral flagellar system. Here, we studied the role of the response regulator FlbD and its trans-acting regulator FliX in the regulation of subpolar flagellar genes. We found that the LP-ring, distal rod, and hook of the subpolar flagellum were tightly controlled by FlbD and FliX. Furthermore, we obtained evidence for the existence of cross-regulation between these gene products and the expression of LafR, the master regulator of lateral flagella. In addition, we observed that extracellular polysaccharide production and biofilm formation also responded to these flagellar regulators. In this regard, FlbD might contribute to the switch between the planktonic and sessile states.IMPORTANCE Most environmental bacteria switch between two free-living states: planktonic, in which individual cells swim propelled by flagella, and sessile, in which bacteria form biofilms. Apart from being essential for locomotion, the flagellum has accessory functions during biofilm formation. The synthesis of flagella is a highly regulated process, and coordination with accessory functions requires the interconnection of various regulatory networks. Here, we show the role of class II regulators involved in the synthesis of the B. diazoefficiens subpolar flagellum and their possible participation in cross-regulation with the lateral flagellar system and exopolysaccharide production. These findings highlight the coordination of the synthetic processes of external structures, such as subpolar and lateral flagella, with exopolysaccharides, which are the main component of the biofilm matrix.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Flagelos/genética , Transativadores/genética , Transativadores/metabolismo
3.
Microorganisms ; 7(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781830

RESUMO

Dual flagellar systems have been described in several bacterial genera, but the extent of their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 110T possesses two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium displays no obvious role, since its performance is explained by cooperation with the subpolar flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity (ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. While all the Bradyrhizobium genomes encode the subpolar flagellum, none of them encodes only the lateral flagellum. The simultaneous presence of both flagella is exclusive of the B. japonicum phylogenomic group. Additionally, 292 Rhizobiales order genomes were analyzed and both flagellar systems are present together in only nine genera. Phylogenetic analysis of 150 representative Rhizobiales genomes revealed an uneven distribution of these flagellar systems. While genomes within and close to the Rhizobiaceae family only possess the lateral flagellum, the subpolar flagellum is exclusive of more early-diverging families, where certain genera also present both flagella.

4.
J Bacteriol ; 199(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533217

RESUMO

Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2, whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR (lateral-flagellar regulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbTL , a class III regulator. We observed different requirements for FlbTL in the synthesis of each flagellin subunit. Although the accumulation of lafA1, but not lafA2, transcripts required FlbTL, the production of both flagellin polypeptides required FlbTL Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species.IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens, an N2-fixing symbiont of soybean plants, possesses dual flagellar systems, including the lateral system that contributes to swimming in wet soil and competition for nodulation and is expressed under high energy availability, as well as under requirement for high torque by the flagella. The structural organization and transcriptional regulation of the 41 genes that comprise this secondary flagellar system seem adapted to adjust bacterial energy expenditures for motility to the soil's environmental dynamics.


Assuntos
Bradyrhizobium/genética , Flagelos/genética , Flagelina/biossíntese , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Flagelina/genética , Ordem dos Genes , Genes Bacterianos , Família Multigênica , Óperon , Glycine max/microbiologia , Sítio de Iniciação de Transcrição
5.
Sci Rep ; 6: 23841, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27053439

RESUMO

Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.


Assuntos
Bradyrhizobium/fisiologia , Flagelos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Quimiotaxia , Regulação Bacteriana da Expressão Gênica , Mutação , Filogenia , Microbiologia do Solo
6.
J Bacteriol ; 194(23): 6651-2, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23144400

RESUMO

Here we present the genome sequence of Rhizobium grahamii CCGE502. R. grahamii groups with other newly described broad-host-range species, which are not very efficient Phaseolus vulgaris symbionts, with a wide geographic distribution and which constitutes a novel Rhizobium clade.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Rhizobium/genética , Análise de Sequência de DNA , Especificidade de Hospedeiro , Dados de Sequência Molecular , Phaseolus/microbiologia , Phaseolus/fisiologia , Nodulação , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Simbiose
7.
Curr Microbiol ; 65(4): 465-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22782468

RESUMO

Soybean lectin (SBL) participates in the recognition between Bradyrhizobium japonicum and soybean although its role remains unknown. To search for changes in the proteome in response to SBL, B. japonicum USDA 110 was incubated for 12 h in a C- and N-free medium with or without SBL (10 µg ml(-1)), and the soluble protein profiles were compared. Two polypeptides, S-adenosyl-methionine synthetase (MetK) and the 30S ribosomal protein S1 (RpsA), were found only in the fractions from rhizobia incubated without SBL. Transcript levels of metK and rpsA were not correlated with polypeptide levels, indicating that there was regulation at translation. In support of this proposal, the 5' translation initiation-region of rpsA mRNA contained folding elements as those involved in regulation of its translation in other species. Disappearance of MetK and RpsA from the soluble protein fractions of SBL-treated rhizobia suggests that SBL might have attenuated the nutritional stress response of B. japonicum.


Assuntos
Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glycine max/química , Lectinas/farmacologia , Metionina Adenosiltransferase/antagonistas & inibidores , Proteínas Ribossômicas/antagonistas & inibidores , Carbono/metabolismo , Meios de Cultura/química , Lectinas/isolamento & purificação , Nitrogênio/metabolismo , Sementes/química
8.
Mol Plant Microbe Interact ; 23(12): 1592-604, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20636103

RESUMO

Exopolysaccharide (EPS) and lipopolysaccharide (LPS) from Bradyrhizobium japonicum are important for infection and nodulation of soybean (Glycine max), although their roles are not completely understood. To better understand this, we constructed mutants in B. japonicum USDA 110 impaired in galactose or galacturonic acid incorporation into the EPS without affecting the LPS. The derivative LP 3010 had a deletion of lspL-ugdH and produced EPS without galacturonic acid whereas LP 3013, with an insertion in exoB, produced EPS without galactose. In addition, the strain LP 3017, with both mutations, had EPS devoid of both galactosides. The missing galactosides were not replaced by other sugars. The defects in EPS had different consequences. LP 3010 formed biofilms and nodulated but was defective in competitiveness for nodulation; and, inside nodules, the peribacteroid membranes tended to fuse, leading to the merging of symbiosomes. Meanwhile, LP 3013 and LP 3017 were unable to form biofilms and produced empty pseudonodules but exoB suppressor mutants were obtained when LP 3013 plant inoculation was supplemented with wild-type EPS. Similar phenotypes were observed with all these mutants in G. soja. Therefore, the lack of each galactoside in the EPS has a different functional effect on the B. japonicum-soybean symbiosis.


Assuntos
Bradyrhizobium/fisiologia , Galactose/química , Galactose/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Bradyrhizobium/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Nodulação/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Polissacarídeos Bacterianos/química , Glycine max/microbiologia , Simbiose
9.
Int J Microbiol ; 2009: 719367, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20016675

RESUMO

Soybean lectin (SBL) purified from soybean seeds by affinity chromatography strongly bound to Bradyrhizobium japonicum USDA 110 cell surface. This lectin enhanced biofilm formation by B. japonicum in a concentration-dependent manner. Presence of galactose during biofilm formation had different effects in the presence or absence of SBL. Biofilms were completely inhibited in the presence of both SBL and galactose, while in the absence of SBL, galactose was less inhibitory. SBL was very stable, since its agglutinating activity of B. japonicum cells as well as of human group A+ erythrocytes was resistant to preincubation for one week at 60 degrees C. Hence, we propose that plant remnants might constitute a source of this lectin, which might remain active in soil and thus favor B. japonicum biofilm formation in the interval between soybean crop seasons.

10.
Arch Microbiol ; 186(2): 119-28, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16802172

RESUMO

The exopolysaccharide (EPS) is an extracellular molecule that in Bradyrhizobium japonicum affects bacterial efficiency to nodulate soybean. Culture conditions such as N availability, type of C-source, or culture age can modify the amount and composition of EPS. To better understand the relationship among these conditions for EPS production, we analyzed their influence on EPS in B. japonicum USDA 110 and its derived mutant DeltaP22. This mutant has a deletion including the 3' region of exoP, exoT, and the 5' region of exoB, and produces a shorter EPS devoid of galactose. The studies were carried out in minimal media with the N-source at starving or sufficient levels, and mannitol or malate as the only C-source. Under N-starvation there was a net EPS accumulation, the levels being similar in the wild type and the mutant with malate as the C-source. By contrast, the amount of EPS diminished in N-sufficient conditions, being poyhydroxybutyrate accumulated with culture age. Hexoses composition was the same in both N-situations, either with mannitol or malate as the only C-source, in contrast to previous observations made with different strains. This result suggests that the change in EPS composition in response to the environment is not general in B. japonicum. The wild type EPS composition was 1 glucose:0.5 galactose:0.5 galacturonic acid:0.17 mannose. In DeltaP22 the EPS had no galactose but had galacturonic acid, thus indicating that it was not produced from oxidation of UDP-galactose. Infectivity was lower in DeltaP22 than in USDA 110. When the mutant infectivity was compared between N-starved or N-sufficient cultures, the N-starved were not less infective, despite the fact that the amounts of altered EPS produced by this mutant under N-starvation were higher than in N-sufficiency. Since this altered EPS does not bind soybean lectin, the interaction of EPS with this protein was not involved in increasing DeltaP22 infectivity under N-starvation.


Assuntos
Bradyrhizobium/metabolismo , Carbono/metabolismo , Glycine max/microbiologia , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/biossíntese , Aderência Bacteriana , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Hexoses/análise , Malatos/metabolismo , Manitol/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos Bacterianos/química , Ligação Proteica , Proteínas de Soja/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA