Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
ACS Omega ; 8(47): 44773-44783, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046330

RESUMO

Oilseed rape (Brassica napus L.) is an important oilseed crop. We examined the diversity of germplasm expressed at three distinct levels (i.e., morphological, biochemical, and DNA levels). In this study, 150 B. napus L. accessions with three check varieties were provided by Bioresources Conservation Institute. The germplasm was grown in field conditions for data collection of 15 quantitative and nine qualitative agro-morphological traits. The result indicated that for 15 quantitative agro-morphological traits, the highest coefficient of variation was recorded for plant height and days to flowering initiation. For nine qualitative traits, most of the accessions have a spatulate leaf, brown color seeds, yellow flowers, and erect silique attitude. The best adoptable genetically diverse exotic Brassica germplasms were selected, i.e., accessions 24178, 24881, 24199, 24214, 24242, and 24192. Based on biochemical analysis for high oil content and high oleic acid content, chakwal sarsoon and accession 24192 were selected. For high oleic and linoleic acids, accession 24181 performed best, for low erucic acid accessions 24177 and 24195. Based on molecular (SSR) markers, the top 50 selected genotypes were evaluated with 30 SSR markers. The 47 genotypes with three check varieties were clustered in six major groups; the coefficient of similarity ranged between 0.18 and 1.00. Based on SSR data, the germplasms accession 24178 and Abasin were the most diverse genotypes. These genotypes have the capacity and could be used in future breeding programs. High genetic variations were investigated through the SSR among the studied genotypes of Brassica napus L. The present study also concluded that SSR is a better technique for intraspecific genetic diversity. Other modern techniques should be applied such as SNIP for the investigation of a high level of genetic diversity among crop plants in the future.

2.
J Inorg Biochem ; 247: 112308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441923

RESUMO

Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rutênio , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/química , DNA/química , DNA Topoisomerases Tipo I/metabolismo , Ferro/química , Rutênio/química , Uracila
3.
Int J Biol Macromol ; 235: 123804, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842736

RESUMO

The liver is the most important organ in the body. Hepatocyte oxidative damage occurs to excess ROS. Liver fibrosis is a mechanism that the immune system uses to treat extreme inflammation by repairing damaged tissue with the creation of a scar. The outcome of fibrosis may be reversed by consuming natural plant extracts with high ROS-scavenging ability. The date palm fruits contain caffeic acid, gallic acid, syringic acid, and ferulic acid, which have anti-inflammatory, antioxidant, and hepatoprotective properties. This study aimed to prepare a date fruit extract, load it onto chitosan nanoparticles, and compare its anti-fibrotic activity with the unloaded crude extract in the CCl4-mouse model. Our findings show that nanocomposite (Cs@FA/DEx) has anti-fibrotic properties and can improve liver function enzymes and endogenous antioxidant enzymes by inhibiting cell apoptosis caused by CCl4-induction in mice. Furthermore, significantly reduced CD95 and ICAM1 levels and down-regulation of TGFß-1 and collagen-α-1 expression demonstrated the anti-fibrotic effects of the Cs@FA/DEx. Therefore, the Cs@FA/DEx might be an innovative supplement for inhibiting liver fibrosis and hepatocyte inflammation induced by chemical toxins. Besides, this nano-supplement could be a promising anti-hepatocellular carcinoma agent as it has potent in vitro anticancer activity against the HePG2 cell line.


Assuntos
Quitosana , Hepatopatias , Nanopartículas , Phoeniceae , Camundongos , Animais , Phoeniceae/química , Quitosana/farmacologia , Quitosana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/química , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Antioxidantes/química , Hepatopatias/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Tetracloreto de Carbono/toxicidade
4.
Int J Biol Macromol ; 234: 123633, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791938

RESUMO

Lung cancer progresses without obvious symptoms and is detected in most patients at late stages, causing a high rate of mortality. Avocado peels (AVP) were thought to be biowaste, but they have antioxidant and anticancer properties in vitro. Chitosan nanoparticles (Cs-NPs) were loaded with various plant extracts, increasing their in vitro and in vivo anticancer activities. Our goal was to load AVP onto Cs-NPs and determine the role of AVP-extract or AVP-loaded Cs-NPs in controlling the progression of lung cancer caused by urethane toxicity. The AVP-loaded chitosan nano-combination (Cs@AVP NC) was synthesized and characterized. Our in vitro results show that Cs@AVP NC has higher anticancer activity than AVP against three human cancer cell lines. The in vivo study proved the activation of apoptosis in lung cancer cells with the Cs@AVP NC oral treatment more than the AVP treatment. Additionally, Cs@AVP NC-treated animals showed significantly higher p53 and Bax-expression levels and lower NF-κB p65 levels in their lung tissues than in positive control animals. In conclusion, our study demonstrated the superior anticancer potency of Cs@AVP NC over AVP extract and its ability to inhibit lung cancer proliferation. Therefore, oral consumption of Cs@AVP NC might be a promising treatment for lung cancer.


Assuntos
Quitosana , Neoplasias Pulmonares , Nanopartículas , Persea , Camundongos , Animais , Humanos , Uretana , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia
5.
Antibiotics (Basel) ; 12(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36830157

RESUMO

This work reports a new approach for the synthesis of extremely small monodispersed silver nanoparticles (AgNPs) (2.9-1.5) by reduction of silver nitrate in a new series of benzyl alkyl imidazolium ionic liquids (BAIILs)-based microemulsions (3a-f) as media and stabilizing agents. Interestingly, AgNPs isolated from the IILMEs bearing the bulkiest substituents (tert-butyl and n-butyl) (3f) displayed almost no nanoparticle agglomeration. In an in vitro antibacterial test against ESKAPE pathogens, all AgNPs-BAIILs had potent antibiotic activity, as reflected by antibacterial efficiency indices. Furthermore, when compared to other nanoparticles, these were the most effective in preventing biofilm formation by the tested bacterial strains. Moreover, the MTT assay was used to determine the cytotoxicity of novel AgNPs-BAIILs on healthy human skin fibroblast (HSF) cell lines. The MTT assay revealed that novel AgNPs-BAIILs showed no significant toxic effects on the healthy cells. Thus, the novel AgNPs-BAIILs microemulsions could be used as safe antibiotics for skin bacterial infection treatments. AgNPs isolated from BAIIL (3c) was found to be the most effective antibiotic of the nanoparticles examined.

6.
Curr Mol Med ; 23(2): 185-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35034594

RESUMO

BACKGROUND: miR-210, a key hypoxamiR, regulates hypoxia and inflammation-linked hypoxia. Systemic lupus erythematosus (SLE), a chronic autoimmune disease, is responsible for many pathological disorders, including photosensitivity. OBJECTIVE: This study aimed to find the correlation between circulating miR-210/HIF-1α levels and photosensitivity in SLE patients and other SLE-associated pathological complications in a single-center case-control study. METHODS: The study population comprised 104 SLE Egyptian patients with photosensitivity, 32 SLE patients without photosensitivity, and 32 healthy subjects. SLE activity was assessed for all patients using the SLE Disease Activity Index (SLEDAI). Clinical complications/manifestations and hematological/serological analyses were recorded. HIF-α concentration was investigated by ELISA, and miR-210 expression was analyzed by qRT-PCR. RESULTS: The results revealed that circulating miR-210 was significantly increased in the SLE/photosensitivity group versus the SLE and control groups. The additional occurrence of malar rash, oral ulcers, renal disorders, or hypertension resulted in a higher expression of miR-210. SLEDAI activity status showed no effect on miR-210. Erythrocyte sedimentation rate, white blood cells, hemoglobin, platelets, patient age, and disease duration were positively correlated with circulatory miR-210. HIF-α concentration was significantly induced in the SLE/photosensitivity group versus the SLE and control groups. In SLE/photosensitivity, the presence of renal disorders and hypertension resulted in the highest HIF-α concentrations. A strong positive correlation was recorded between HIF-α concentration and circulatory miR-210 in SLE/photosensitivity patients (r = 0.886). CONCLUSION: The dysregulation of circulating miR-210/HIF-1α levels in SLE/ photosensitivity patients is controlled by the presence of additional pathological complications, and results suggest that the hypoxia pathway might interact positively with the pathogenesis and disease progression of SLE.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Estudos de Casos e Controles , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/genética , Hipóxia/complicações , Hipóxia/genética , MicroRNAs/genética
7.
Curr Med Sci ; 42(6): 1231-1239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36469203

RESUMO

OBJECTIVE: MicroRNAs are fine regulators for gene expression during the post-transcriptional stage in many autoimmune diseases. HypoxamiRs (miR-210 and miR-21) play an important role in hypoxia and in inflammation-associated hypoxia. Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease that would potentiate many pathological complications, including hemolytic anemia. This study aimed to investigate the role of hypoxamiRs in SLE/hemolytic anemia patients. METHODS: This work was designed to analyze the circulating levels of↱ the miR-210 and miR-21 expressions and hypoxia-inducible factor-1α (HIF-α) in SLE/hemolytic anemia patients. SLE activity was evaluated for all patients by SLE Disease Activity Index (SLEDAI). Clinical manifestations/complications and serological/hematological investigations were reported. HIF-α concentration was assayed by ELISA and expression of miR-21 and miR-210 was analyzed by qRT-PCR. RESULTS: The results indicated that the fold change of the miR-210/miR-21 expressions in plasma was significantly elevated in SLE/hemolytic anemia patients. A strong positive correlation between the miR-210 and miR-21 expression levels was also recorded. Among the associated-disease complications, hypertension, arthritis, oral ulcers, and serositis were associated with a high circulating miR-210 expression, while the occurrence of renal disorders was associated with the increased miR-21 expression. Furthermore, the HIF-α level was remarkably elevated in SLE/hemolytic anemia patients. A high positive correlation was recorded between the HIF-α concentration and miR-210/miR-21 expression levels. The occurrence of oral ulcers, arthritis, and hypertension was associated with the increased HIF-α concentration. On the other hand, SLEDAI and white blood cell count were positively correlated with miR-21/ miR-210. The erythrocyte sedimentation rate was positively correlated with miR-21. CONCLUSION: The dysregulation of the circulating miR-210/miR-210/HIF-1α levels in SLE/hemolytic anemia patients advocated that the hypoxia pathway might have an essential role in the pathogenesis and complications of these diseases.


Assuntos
Anemia Hemolítica , Artrite , Hipertensão , Lúpus Eritematoso Sistêmico , MicroRNAs , Úlceras Orais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Úlceras Orais/complicações , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/genética , Anemia Hemolítica/complicações , Artrite/complicações , Hipertensão/complicações
8.
Animals (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359158

RESUMO

Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-ß, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits.

9.
Front Nutr ; 9: 966557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204384

RESUMO

This project was designed to explore the xanthine oxidase (XO) inhibitory mechanism of eight structurally diverse phenolic compounds [quercetin: C1, quercetin-3-rhamnoside: C2, 4, 5-O-dicaffeoylquinic acid: C3, 3, 5-O-dicaffeoylquinic acid: C4, 3, 4-O-di-caffeoylquinic acid: C5, 4-O-caffeoylquinic acid (C6), 3-O-caffeoylquinic acid: C7, and caffeic acid: C8]. For this purpose, in-vitro and different computational methods were applied to determine the xanthine oxidase (XO) inhibitory potential of eight structurally diverse phenolic compounds. The results revealed that phenolic compounds (C1-C8) possess strong to weak XO inhibitory activity. These results were further confirmed by atomic force microscopy (AFM) and 1H NMR analysis. Furthermore, computational study results revealed that phenolic compounds (C1-C8) bind with the surrounding amino acids of XO at the molybdenum (MO) site. These in-vitro and in-silico results divulge that phenolic compounds have a strong potential to lower uric acid levels via interacting with the XO enzyme and can be used to combat hyperuricemia.

10.
PeerJ ; 10: e13990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213511

RESUMO

Background: Obesity and diabetes are becoming increasingly prevalent around the world. Inflammation, oxidative stress, insulin resistance, and glucose intolerance are linked to both obesity and type 2 diabetes, and these disorders are becoming major public health issues globally. Methods: This study evaluated the effects of obesity, diabetes, and hypoxia on the levels of pro- and anti-inflammatory cytokines in rats. We divided 120 Wistar rats in two groups, male and female, each including six subgroups: control (CTRL), obese (high-fat diet (HFD)), diabetic (streptozotocin (STZ)-treated), hypoxic (HYX), obese + diabetic (HFD/STZ), and obese + diabetic + hypoxic (HFD/STZ/HYX). We examined the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL10, and leptin in pancreatic tissues and serum. Results: No significant difference was observed in serum levels of cholesterol, triglycerides, and low-density lipoprotein (LDL) between HYX and CTRL in either sex. However, they were significantly increased, whereas high-density lipoprotein (HDL) was significantly decreased in HFD, STZ, HFD/STZ, and HFD/STZ/HPX compared with CTRL in both sexes. The expression of Tnf-α, Il6, and Lep was significantly upregulated in all subgroups compared with CTRL in both sexes. STZ and HYX showed no significant differences in the expression of these genes between sexes, whereas Tnf-α and Il6 were upregulated in male HFD, HFD/STZ, and HFD/STZ/HYX compared with females. Protein levels showed similar patterns. Combination subgroups, either in the absence or presence of hypoxia, frequently exhibited severe necrosis of endocrine components in pancreatic lobules. The combination of obesity, diabetes, and hypoxia was associated with inflammation, which was verified at the histopathological level.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Masculino , Feminino , Animais , Diabetes Mellitus Tipo 2/genética , Citocinas , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Ratos Wistar , Diabetes Mellitus Experimental/genética , Obesidade/genética , Inflamação/genética
12.
Front Genet ; 13: 872845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051694

RESUMO

The NRAS gene is a well-known oncogene that acts as a major player in carcinogenesis. Mutations in the NRAS gene have been linked to multiple types of human tumors. Therefore, the identification of the most deleterious single nucleotide polymorphisms (SNPs) in the NRAS gene is necessary to understand the key factors of tumor pathogenesis and therapy. We aimed to retrieve NRAS missense SNPs and analyze them comprehensively using sequence and structure approaches to determine the most deleterious SNPs that could increase the risk of carcinogenesis. We also adopted structural biology methods and docking tools to investigate the behavior of the filtered SNPs. After retrieving missense SNPs and analyzing them using six in silico tools, 17 mutations were found to be the most deleterious mutations in NRAS. All SNPs except S145L were found to decrease NRAS stability, and all SNPs were found on highly conserved residues and important functional domains, except R164C. In addition, all mutations except G60E and S145L showed a higher binding affinity to GTP, implicating an increase in malignancy tendency. As a consequence, all other 14 mutations were expected to increase the risk of carcinogenesis, with 5 mutations (G13R, G13C, G13V, P34R, and V152F) expected to have the highest risk. Thermodynamic stability was ensured for these SNP models through molecular dynamics simulation based on trajectory analysis. Free binding affinity toward the natural substrate, GTP, was higher for these models as compared to the native NRAS protein. The Gly13 SNP proteins depict a differential conformational state that could favor nucleotide exchange and catalytic potentiality. A further application of experimental methods with all these 14 mutations could reveal new insights into the pathogenesis and management of different types of tumors.

13.
J Food Biochem ; 46(10): e14286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929489

RESUMO

Abnormal uric acid level result in the development of hyperuricemia and hallmark of various diseases, including renal injury, gout, cardiovascular disorders, and non-alcoholic fatty liver. This study was designed to explore the anti-inflammatory potential of stevia residue extract (STR) against hyperuricemia-associated renal injury in mice. The results revealed that STR at dosages of 150 and 300 mg/kg bw and allopurinol markedly modulated serum uric acid, blood urea nitrogen, and creatinine in hyperuricemic mice. Serum and renal cytokine levels (IL-18, IL-6, IL-1Β, and TNF-α) were also restored by STR treatments. Furthermore, mRNA and immunohistochemistry (IHC) analysis revealed that STR ameliorates UA (uric acid)-associated renal inflammation, fibrosis, and EMT (epithelial-mesenchymal transition) via MMPS (matrix metalloproteinases), inhibiting NF-κB/NLRP3 activation by the AMPK/SIRT1 pathway and modulating the JAK2-STAT3 and Nrf2 signaling pathways. In summary, the present study provided experimental evidence that STR is an ideal candidate for the treatment of hyperuricemia-mediated renal inflammation. PRACTICAL APPLICATIONS: The higher uric acid results in hyperuricemia and gout. The available options for the treatment of hyperuricemia and gout are the use of allopurinol, and colchicine drugs, etc. These drugs possess several undesirable side effect. The polyphenolic compounds are abundantly present in plants, for example, stevia residue extract (STR) exert a positive effect on human health. From this study results, we can recommend that polyphenolic compounds enrich STR could be applied to develop treatment options for the treatment of hyperuricemia and gout.


Assuntos
Medicamentos de Ervas Chinesas , Gota , Hiperuricemia , Stevia , Proteínas Quinases Ativadas por AMP/farmacologia , Alopurinol/metabolismo , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Colchicina/metabolismo , Colchicina/farmacologia , Colchicina/uso terapêutico , Creatinina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Gota/tratamento farmacológico , Gota/metabolismo , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Interleucina-6/metabolismo , Rim , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/metabolismo , Sirtuína 1/metabolismo , Stevia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Úrico
14.
Biomedicines ; 10(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35884960

RESUMO

Oxidative stress is considered the main etiologic factor involved in inflammatory bowel disease (IBD). Integration of nanocarriers for natural therapeutic agents with antioxidant and anti-inflammatory potential is a novel promising candidate for curing IBD. Herein, the colonic antioxidant and anti-inflammatory effects of different concentrations of quercetin nanoparticles (QT-NPs) were evaluated using a dextran sulfate sodium (DSS)-induced colitis model. Following colitis induction, the efficacy and mechanistic actions of QT-NPs were evaluated by assessing lesion severity, molecular aids controlling oxidative stress and inflammatory response, and histopathological and immunohistochemistry examination of colonic tissues. Administration of QT-NPs, especially at higher concentrations, significantly reduced the disease activity index and values of fecal calprotectin marker compared to the colitic group. Colonic oxidant/antioxidant status (ROS, H2O2, MDA, SOD, CAT, GPX and TAC) was restored after treatment with higher concentrations of QT-NPs. Moreover, QT-NPs at levels of 20 mg/kg and, to a lesser extent, 15 mg/kg reduced Nrf2 and HO-1 gene expression, which was in line with decreasing the expression of iNOS and COX2 in colonic tissues. Higher concentrations of QT-NPs greatly downregulated pro-inflammatory cytokines; upregulated genes encoding occludin, MUC-2 and JAM; and restored the healthy architectures of colonic tissues. Taken together, these data suggest that QT-NPs could be a promising alternative to current IBD treatments.

15.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889493

RESUMO

A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 µM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of ß-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.


Assuntos
Antineoplásicos , Apoptose , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
16.
Front Vet Sci ; 9: 847363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754541

RESUMO

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride synthesis and plays an important role in the synthesis of fat, but the effects of its expression on intramuscular fat (IMF) content and muscle development are still unknown. In this study, we investigated the expression of the DGAT2 gene and its associations with IMF content and breast muscle fiber characteristics in pigeons. The spatiotemporal expression profile of the pigeon DGAT2 gene in breast muscle showed that the mRNA expression level of DGAT2 gene in subcutaneous fat was the highest (p < 0.01) among eight tissues from 0 to 4 weeks of age, and showed an upward trend week by week, followed by liver (p < 0.05). Moreover, both mRNA and protein levels of the DGAT2 gene in breast muscle showed an upward trend from 0 to 4 weeks (p < 0.05), accompanied by the upregulation of MYOD1 and MSTN. In addition, the paraffin section analysis results revealed that the diameter and cross-sectional area of pectoralis muscle fiber significantly increased with age (p < 0.05), and a significant positive correlation was shown between the DGAT2 gene expression level and muscle fiber diameter (p < 0.05). Furthermore, correlation analysis suggested that the mRNA expression level of the pigeon DGAT2 gene was significantly (p < 0.01) correlated with IMF content in breast muscle. These results imply that the DGAT2 gene has a close relationship with IMF content and breast muscle fiber characteristics in pigeons, indicating that the DGAT2 gene might be used as a candidate gene marker-assisted breeding in pigeons.

17.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745081

RESUMO

A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 µM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.


Assuntos
Amidas , Antineoplásicos , Amidas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Relação Estrutura-Atividade
18.
Curr Issues Mol Biol ; 44(4): 1610-1625, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723368

RESUMO

At high elevations, the human body experiences a number of pathological, physiological, and biochemical changes, all of which have adverse impacts on human health and organ vitality. This study aimed to investigate the alterations in the liver and kidney biomarkers, oxidative stress markers, gene expression, and cellular histology of rats maintained at high altitudes and normal sea level. A total of twenty male Wistar rats at 2 months of age were randomly assigned to two groups. The rats in group A were maintained at normal sea level in Jeddah, whereas rats in group B were maintained in an area in Taif 2600 m above sea level. After 2 months of housing, orbital blood samples were collected for the analysis of significant biochemical indicators of oxidative stress biomarkers of the liver and kidneys. Liver and kidney tissues from both groups were taken to examine the hepatorenal changes occurring at the biochemical, histological, immunohistochemical, and genetic levels. The results revealed substantial increases in the serum levels of liver and kidney biomarkers (GPT, GOT, urea, and creatinine) and decreases in the serum levels of antioxidant biomarkers (SOD, catalase, GSH, and NO). In parallel, the levels of the malondialdehyde (MDA) tissue damage marker and inflammatory cytokines (IL-1ß, TNF-α, and IFN-γ) were increased in the high-altitude group compared to the normal sea level group. In addition, there were significant alterations in the oxidative and inflammatory status of rats that lived at high altitude, with considerable upregulation in the expression of hepatic VEGF, type 1 collagen, Cox-2, TNF-α, and iNOS as well as renal EPASI, CMYC, HIF-α, and EGLN-2 genes in the high-altitude group compared with controls housed at normal sea level. In conclusion, living at high altitude induces hepatorenal damage and biochemical and molecular alterations, all of which may serve as critical factors that must be taken into account for organisms living at high altitudes.

19.
Front Chem ; 10: 890675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518717

RESUMO

Cyclophosphamide (CP) is a mutagen that is used in cancer chemotherapy, due to its genotoxicity and as an immunosuppressive agent. Thalidomide (TH) is another cancer chemotherapeutic drug. In this study, the cytogenotoxicity and hypoxia modulatory activities of two phthalimide analogs of TH have been evaluated with/without CP. Both analogs have increased CP-stimulated chromosomal aberrations than those induced by TH, including gaps, breaks/fragments, deletions, multiple aberrations, and tetraploidy. The analogs have elevated the cytotoxic effect of CP by inhibiting the mitotic activity, in which analog 2 showed higher mitosis inhibition. CP has induced binucleated and polynucleated bone marrow cells (BMCs), while micronuclei (MN) are absent. TH and analogs have elevated the CP-stimulated binucleated BMCs, while only analogs have increased the CP-induced polynucleated BMCs and inhibited the mononucleated BMCs. MN-BMCs were shown together with mononucleated, binucleated, and polynucleated cells in the CP group. Both analogs have elevated mononucleated and polynucleated MN-BMCs, whereas in presence of CP, TH and analogs have enhanced mononucleated and binucleated MN-BMCs. The analogs significantly induce DNA fragmentation in a comet assay, where analog 1 is the strongest inducer. The treatment of mice with CP has resulted in a high hypoxia status as indicated by high pimonidazole adducts and high HIF-1α and HIF-2α concentrations in lymphocytes. Analogs/CP-treated mice showed low pimonidazole adducts. Both analogs have inhibited HIF-1α concentration but not HIF-2α. Taken together, the study findings suggest that both analogs have a higher potential to induce CP-genotoxicity than TH and that both analogs inhibit CP-hypoxia via the HIF-1α-dependent mechanism, in which analog 1 is a more potent anti-hypoxic agent than analog 2. Analog 1 is suggested as an adjacent CP-complementary agent to induce CP-genotoxicity and to inhibit CP-associated hypoxia.

20.
Diagnostics (Basel) ; 12(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453838

RESUMO

Background: Early detection and screening of breast cancer (BC) might help improve the prognosis of BC patients. This study evaluated the use of serum microRNAs (miRs) as non-invasive biomarkers in BC patients. Methods: Using quantitative real-time polymerase chain reaction, we evaluated the serum expression of four candidate miRs (miR-155, miR-373, miR-10b, and miR-34a) in 99 Egyptian BC patients and 40 healthy subjects (as a control). The miRs expression was correlated with clinicopathological data. In addition, the sensitivity and specificity of the miRs were determined using receiver operating characteristic (ROC) curve analysis. Results: Serum miR-155, miR-373, and miR-10b expression were significantly upregulated (p < 0.001), while serum miR-34a was downregulated (p < 0.00) in nonmetastatic (M0) BC patients compared to the control group. In addition, serum miR-155 and miR-10b were upregulated in BC patients with large tumor sizes and extensive nodal involvement (p < 0.001). ROC curve analysis showed high diagnostic accuracy (area under the curve = 1.0) when the four miRs were combined. Serum miR-373 was significantly upregulated in the human epidermal growth factor 2−negative (p < 0.001), estrogen receptor−positive (p < 0.005), and progesterone receptor (PR)-positive (p < 0.024) in BC patients, and serum miR-155 was significantly upregulated in PR-negative (p < 0.001) BC patients while both serum miR-155 and miR-373 were positively correlated with the tumor grade. Conclusions: Circulating serum miR-155, miR-373, miR-10b, and miR-34a are potential biomarkers for early BC detection in Egyptian patients and their combination shows high sensitivity and specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA