Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934082

RESUMO

The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due at least in part to drug resistance of leukemia stem cells (LSCs). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors (TKIs) can eradicate bpCML LSCs. In this report, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with venetoclax/TKI combinations. Transcriptional analysis of LSCs exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to venetoclax/dasatinib. Pre-treatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells toward venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment does not affect normal stem cell function, suggestive of a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is an LSCselective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances venetoclax/dasatinib response in targeting LSCs, providing a rationale for exploring lysosomal disruption as an adjunct therapeutic strategy to prolong disease remission.

2.
Cancer Discov ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787341

RESUMO

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

3.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873284

RESUMO

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.

4.
Blood ; 136(23): 2607-2619, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929449

RESUMO

The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5'-monophosphate-activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.


Assuntos
Medula Óssea/fisiologia , Conexina 43/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/transplante , Regeneração , Animais , Humanos , Camundongos
5.
Blood ; 136(16): 1824-1836, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32483624

RESUMO

Yap1 and its paralogue Taz largely control epithelial tissue growth. We have identified that hematopoietic stem cell (HSC) fitness response to stress depends on Yap1 and Taz. Deletion of Yap1 and Taz induces a loss of HSC quiescence, symmetric self-renewal ability, and renders HSC more vulnerable to serial myeloablative 5-fluorouracil treatment. This effect depends on the predominant cytosolic polarization of Yap1 through a PDZ domain-mediated interaction with the scaffold Scribble. Scribble and Yap1 coordinate to control cytoplasmic Cdc42 activity and HSC fate determination in vivo. Deletion of Scribble disrupts Yap1 copolarization with Cdc42 and decreases Cdc42 activity, resulting in increased self-renewing HSC with competitive reconstitution advantages. These data suggest that Scribble/Yap1 copolarization is indispensable for Cdc42-dependent activity on HSC asymmetric division and fate. The combined loss of Scribble, Yap1, and Taz results in transcriptional upregulation of Rac-specific guanine nucleotide exchange factors, Rac activation, and HSC fitness restoration. Scribble links Cdc42 and the cytosolic functions of the Hippo signaling cascade in HSC fate determination.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Células-Tronco Hematopoéticas/citologia , Humanos , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
6.
Curr Stem Cell Rep ; 4(2): 166-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31453073

RESUMO

PURPOSE OF REVIEW: Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. RECENT FINDINGS: For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. SUMMARY: Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.

7.
Cancer Cell ; 30(5): 737-749, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27846391

RESUMO

The t(4;11)(q21;q23) fuses mixed-lineage leukemia (MLL) to AF4, the most common MLL-fusion partner. Here we show that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus permitting efficient transduction of human CD34+ cells, thereby generating a model of t(4;11) pro-B acute lymphoblastic leukemia (ALL) that fully recapitulates the immunophenotypic and molecular aspects of the disease. MLL-Af4 induces a B ALL distinct from MLL-AF9 through differential genomic target binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such incongruity was also observed in t(4;11) patients in whom leukemia evaded CD19-directed therapy by undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the pathogenesis of MLL-AF4 leukemogenesis.


Assuntos
Antígenos CD34/metabolismo , Transformação Celular Neoplásica/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Translocação Genética , Animais , Linhagem da Célula , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo
8.
Cancer Cell ; 28(3): 343-56, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26321221

RESUMO

Alterations of IKZF1, encoding the lymphoid transcription factor IKAROS, are a hallmark of high-risk acute lymphoblastic leukemia (ALL), however the role of IKZF1 alterations in ALL pathogenesis is poorly understood. Here, we show that in mouse models of BCR-ABL1 leukemia, Ikzf1 and Arf alterations synergistically promote the development of an aggressive lymphoid leukemia. Ikzf1 alterations result in acquisition of stem cell-like features, including self-renewal and increased bone marrow stromal adhesion. Retinoid receptor agonists reversed this phenotype, partly by inducing expression of IKZF1, resulting in abrogation of adhesion and self-renewal, cell cycle arrest, and attenuation of proliferation without direct cytotoxicity. Retinoids potentiated the activity of dasatinib in mouse and human BCR-ABL1 ALL, providing an additional therapeutic option in IKZF1-mutated ALL.


Assuntos
Proteínas de Fusão bcr-abl/genética , Fator de Transcrição Ikaros/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Retinoides/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores do Ácido Retinoico/metabolismo
9.
Dev Genes Evol ; 224(3): 137-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24663498

RESUMO

Mutations of the puromycin-sensitive aminopeptidase (Psa) orthologs of flies, mice, and plants result in meiotic errors and reduced embryonic viability. Genetic lesions of the Caenorhabditis elegans ortholog of Psa, pam-1, similarly result in dramatic reductions of worm fecundity. The gonads of animals harboring mutant pam-1 alleles display expanded populations of pachytene germinal nuclei and delayed nucleolar disassembly in the developing oocytes, phenotypes that ultimately hinder embryonic viability and overall brood sizes. PAM-1 is a member of the M1 aminopeptidase family and shares a high amount of homology with its M1 paralogs. Comparative analysis of the M1 aminopeptidase family reveals that only nine (including PAM-1) of the 17 annotated M1 aminopeptidases are predicted to be catalytically active. Interestingly, we demonstrate that three of these active M1 paralogs have roles independent of PAM-1 in promoting gametogenesis and fecundity. Simultaneous inhibition of pam-1 and M1 paralogs produces synergistic decreases in overall brood sizes and embryonic viability, exacerbates the germinal phenotypes of pachytene extension and delayed nucleolar disassembly, and unmasks previously hidden phenotypes. Our data suggests that the interdependent functions of multiple M1 aminopeptidases are necessary for reproductive success in C. elegans and lend further credence to the redundant composition of an evolutionarily conserved enzyme family.


Assuntos
Aminopeptidases/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/genética , Animais , Fertilidade , Dados de Sequência Molecular , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA