Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 105: 104452, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33212311

RESUMO

The resistance of microbes to commonly used antibiotics has become a worldwide health problem. A major underlying mechanism of microbial antibiotic resistance is the export of drugs from bacterial cells. Drug efflux is mediated through the action of multidrug resistance efflux pumps located in the bacterial cell membranes. The critical role of bacterial efflux pumps in antibiotic resistance has directed research efforts to the identification of novel efflux pump inhibitors that can be used alongside antibiotics in clinical settings. Here, we aimed to find potential inhibitors of the archetypical ATP-binding cassette (ABC) efflux pump BmrA of Bacillus subtilis via virtual screening of the Mu.Ta.Lig. Chemotheca small molecule library. Molecular docking calculations targeting the nucleotide-binding domain of BmrA were performed using AutoDock Vina. Following a further drug-likeness filtering step based on Lipinski's Rule of Five, top 25 scorers were identified. These ligands were then clustered into separate groups based on their contact patterns with the BmrA nucleotide-binding domain. Six ligands with distinct contact patterns were used for further in vitro inhibition assays based on intracellular ethidium bromide accumulation. Using this methodology, we identified two novel inhibitors of BmrA from the Chemotheca small molecule library.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos , Etídio/química , Humanos , Ligantes , Conformação Proteica , Multimerização Proteica , Bibliotecas de Moléculas Pequenas/metabolismo
2.
OMICS ; 22(11): 717-732, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30457468

RESUMO

Alkaliphilic organisms are among an industrially important class of extremophile microorganisms with the ability to thrive at pH 10-11.5. Microorganisms that exhibit alkaliphilic characteristics are sources of alkali-tolerant enzymes such as proteases, starch degrading enzymes, cellulases, and metabolites such as antibiotics, enzyme inhibitors, siderophores, organic acids, and cholic acid derivatives, which have found various applications in industry for human and environmental health. Yet, multi-omics mechanisms governing adaptation to high alkalinity have been poorly studied. We undertook the present work to understand, as a case study, the alkaliphilic adaptation strategy of the novel microorganism, Bacillus marmarensis DSM 21297, to alkaline conditions using a multi-omics approach that employed transcriptomics and proteomics. As alkalinity increased, bacteria remodeled the peptidoglycan layer by changing peptide moieties along with the peptidoglycan constituents and altered the cell membrane to reduce lipid motility and proton leakiness to adjust intracellular pH. Different transporters also contributed to the maintenance of this pH homeostasis. However, unlike in most well-known alkaliphiles, not only sodium ions but also potassium ions were involved in this process. Interestingly, increased pH has triggered the expression of neither general stress proteins nor gene encoding proteins associated with heat, salt, and nutrient stresses. Only an increase in the expression of oxidative stress related genes was evident. Endospore formation, also a phenomenon closely linked to stress, was unclear. This questioned if high pH was a real stress for B. marmarensis. These new findings, corroborated using the multi-omics approach of the present case study, broaden the knowledge on the mechanisms of alkaliphilic adaptation and might also potentially offer useful departure points for further industrial applications with other microorganisms.


Assuntos
Adaptação Fisiológica/genética , Bacillus/genética , Proteoma , Transcriptoma , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Concentração de Íons de Hidrogênio , Proteômica , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA