Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultramicroscopy ; 252: 113751, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37302908

RESUMO

Imaging in electron microscopy is adversely affected by partial electron spatial and temporal coherence. Temporal coherence has been treated theoretically in the past using the method pioneered fifty years ago by Hanßen and Trepte, who assumed a Gaussian energy distribution. However, state-of-the-art instruments employ field emission (FE) sources that emit electrons with a non-Gaussian energy distribution. We have updated the treatment of temporal coherence to describe the effects of an arbitrary energy distribution on image formation. The updated approach is implemented in Fourier optics simulations to explore the effect of FE on image formation in conventional, non-aberration-corrected (NAC) and aberration-corrected (AC) low energy electron microscopy. It is found that the resolution that can be achieved for the FE distribution is only slightly degraded compared to a Gaussian distribution with the same energy spread. FE also produces a focus offset. These two effects are weaker for AC than for NAC microscopy. These and other insights may be relevant to the selection of the aperture size that optimizes resolution and to analyses that make use of focal image series. The approach developed here is also applicable to transmission electron microscopy.


Assuntos
Óptica e Fotônica , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
2.
Nat Commun ; 13(1): 1773, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365650

RESUMO

The use of single-crystal substrates as templates for the epitaxial growth of single-crystal overlayers has been a primary principle of materials epitaxy for more than 70 years. Here we report our finding that, though counterintuitive, single-crystal 2D materials can be epitaxially grown on twinned crystals. By establishing a geometric principle to describe 2D materials alignment on high-index surfaces, we show that 2D material islands grown on the two sides of a twin boundary can be well aligned. To validate this prediction, wafer-scale Cu foils with abundant twin boundaries were synthesized, and on the surfaces of these polycrystalline Cu foils, we have successfully grown wafer-scale single-crystal graphene and hexagonal boron nitride films. In addition, to greatly increasing the availability of large area high-quality 2D single crystals, our discovery also extends the fundamental understanding of materials epitaxy.

3.
ACS Nano ; 15(1): 1351-1357, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33377769

RESUMO

The production of high-quality two-dimensional (2D) materials is essential for the ultimate performance of single layers and their hybrids. Hexagonal boron nitride (h-BN) is foreseen to become the key 2D hybrid and packaging material since it is insulating, impermeable, flat, transparent, and chemically inert, though it is difficult to attain in ultimate quality. Here, a scheme is reported for producing single layer h-BN that shows higher quality in view of mosaicity and strain variations than material from chemical vapor deposition (CVD). We delaminate CVD h-BN from Rh(111) and transfer it to a clean metal surface. The twisting angle between BN and the second substrate yields metastable moiré structures. Annealing above 1000 K leads to 2D distillation, i.e., catalyst-assisted BN sublimation from the edges of the transferred layer and subsequent condensation into superior quality h-BN. This provides a way for 2D material production remote from CVD instrumentation.

4.
Adv Mater ; 31(35): e1903615, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31264306

RESUMO

To date, thousands of publications have reported chemical vapor deposition growth of "single layer" graphene, but none of them has described truly single layer graphene over large area because a fraction of the area has adlayers. It is found that the amount of subsurface carbon (leading to additional nuclei) in Cu foils directly correlates with the extent of adlayer growth. Annealing in hydrogen gas atmosphere depletes the subsurface carbon in the Cu foil. Adlayer-free single crystal and polycrystalline single layer graphene films are grown on Cu(111) and polycrystalline Cu foils containing no subsurface carbon, respectively. This single crystal graphene contains parallel, centimeter-long ≈100 nm wide "folds," separated by 20 to 50 µm, while folds (and wrinkles) are distributed quasi-randomly in the polycrystalline graphene film. High-performance field-effect transistors are readily fabricated in the large regions between adjacent parallel folds in the adlayer-free single crystal graphene film.

5.
Nanotechnology ; 29(50): 505601, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30222130

RESUMO

Using scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy, we show that Ru forms metallic nanoislands on graphite, covered by a graphene monolayer. These islands are air-stable, contain 2-4 layers of Ru, and have diameters on the order of 10 nm. To produce these nanoislands two conditions must be met during synthesis. The graphite surface must be ion-bombarded, and subsequently held at an elevated temperature (1000-1180 K) during Ru deposition. A coincidence lattice forms between the graphene overlayer and the Ru island top. Its characteristics-coincidence lattice constant, corrugation amplitude, and variation of carbon lattice appearance within the unit cell-closely resemble the well-established characteristics of single-layer graphene on the (0001) surface of bulk Ru. Quantitative analysis of the graphene lattice in relation to the coincidence lattice on the island tops show that the two-dimensional lattice constant of the underlying metal equals that of bulk Ru(0001), within experimental error. The embedded Ru islands are energetically favored over on-top (adsorbed) islands, based on density-functional-theory calculations for Ru films with 1-3 Ru layers. We propose a formation mechanism in which Ru atoms intercalate via defects that act as entry portals to the carbon galleries, followed by nucleation and growth in the galleries. In this model, high deposition temperature is necessary to prevent blockage of entry portals.

6.
J Phys Condens Matter ; 26(31): 315006, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24934101

RESUMO

The growth and reaction of Fe on a ZnS(1 0 0) substrate are studied in situ and with high lateral resolution using low energy electron microscopy (LEEM), micro low energy electron diffraction ( µLEED), x-ray photoemission electron microscopy (XPEEM), microprobe x-ray photoelectron spectroscopy ( µXPS) and x-ray magnetic circular dichroism PEEM (XMCDPEEM) for complementary structural, chemical, and magnetic characterization. Initially, a two-dimensional (Fe, Zn)S reaction layer forms with thickness that depends on growth temperature. Further growth results in the formation of a variety of three-dimensional crystals, most of them strongly elongated in the form of 'nanowires' of two distinct types, labeled as A and B. Type A nanowires are oriented near the ZnS[1 1 0] direction and are composed of Fe. Type B nanowires are oriented predominantly along directions a few degrees off the ZnS[0 0 1] direction and are identified as Greigite (Fe3S4). Both types of nanowires are magnetic with Curie temperatures above 450 °C. The understanding of the reactive growth mechanism in this system that is provided by these investigations may help to develop growth methods for other elemental and transition metal chalcogenide nanostructures on ZnS and possibly on other II-VI semiconductor surfaces.

7.
Science ; 327(5967): 789-90, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20150472
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA