Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 180(2): 383-394, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33454789

RESUMO

Poor solubility of drug candidates mainly affects bioavailability, but poor solubility of drugs and metabolites can also lead to precipitation within tissues, particularly when high doses are tested. RO0728617 is an amphoteric compound bearing basic and acidic moieties that has previously demonstrated good solubility at physiological pH but underwent widespread crystal deposition in multiple tissues in rat toxicity studies. The aim of our investigation was to better characterize these findings and their underlying mechanism(s), and to identify possible screening methods in the drug development process. Main microscopic features observed in rat RO0728617 toxicity studies were extensive infiltrates of crystal-containing macrophages in multiple organs. Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry revealed that these crystals contained the orally administered parent compound, and locality was confirmed to be intracytoplasmic and partly intralysosomal by electron microscopic examination. Crystal formation was explained by lysosomal accumulation of the compound followed by precipitation of the hydrochloride salt under physiological conditions in the lysosomes, which have a lower pH and higher chloride concentration in comparison to the cytosol. This study demonstrates that risk of drug precipitation can be assessed by comparing the estimated lysosomal drug concentration at a given dose with the solubility of the compound at lysosomal conditions.


Assuntos
Lisossomos , Preparações Farmacêuticas , Animais , Disponibilidade Biológica , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Pharmacol Toxicol Methods ; 104: 106873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413488

RESUMO

INTRODUCTION: Confocal scanning laser ophthalmoscopy and optical coherence tomography (cSLO-OCT) became available for human and animal ophthalmic examinations in recent years. The purpose of this study was to evaluate lesion detection and localization with cSLO-OCT imaging in an experimental outer retinal toxicity model and to compare cSLO-OCT to standard examination methods (indirect ophthalmoscopy (IO), fundus photography (FP) and central section histopathology). METHODS: A test compound was orally administered to albino rats (n = 4) for four weeks (part A) and to albino (n = 2) and pigmented (n = 2) rats for eight weeks (part B). Control animals received vehicle only. Retinal changes were documented using cSLO-OCT, IO, FP, angiography and histopathology. Retinal thicknesses were compared between groups using a mixed effects model. RESULTS: All compound-treated animals developed progressive multifocal hyperreflective spot changes mostly confined to the retinal pigment epithelium. In study parts A and B, cSLO identified fundus lesions earlier than IO/FP in albino rats. In study part B, cSLO quantified fundus lesions more accurately than IO/FP in albino rats but no difference was seen in pigmented rats. Central section histopathology revealed no abnormalities in three out of four compound-treated animals in part B. Altogether, without cSLO-OCT, present fundus changes would have remained undetected in one of four compound-treated animals in both parts A and B. DISCUSSION: Integration of combined cSLO-OCT imaging into toxicology study design can improve toxicity study readouts and facilitate longitudinal examination of single animals at multiple time points, leading to a reduction of experimental animal numbers.


Assuntos
Oftalmoscopia/métodos , Retina/efeitos dos fármacos , Tomografia de Coerência Óptica/métodos , Testes de Toxicidade/métodos , Animais , Avaliação Pré-Clínica de Medicamentos , Angiofluoresceinografia , Masculino , Ratos , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Fatores de Tempo
3.
Invest Ophthalmol Vis Sci ; 60(10): 3332-3342, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370061

RESUMO

Purpose: The purpose of this study is to assess with spectral-domain optical coherence tomography (OCT) the interspecies variation of outer retinal morphology and identification of choriocapillaris in four research animal species. Methods: Spectralis HRA+OCT images acquired from locations dorsal, central, and ventral to the optic disc in healthy, anesthetized animals were evaluated by two independent readers. First, the number of OCT B-scans on which a choriocapillaris layer could clearly be identified was determined and quantified, and B-scans were correlated with histology. Second, B-scans demonstrating the highest number of discernable individual outer retinal bands (ORBs) were defined as ideal presentation and quantified. Interrater agreement was evaluated. Results: Five-hundred seventy-four B-scans from 96 subjects were evaluated. The choriocapillaris layer was identified in 100.0% of minipig, 70.8% of rabbit, 75.4% of pigmented rat, 77.7% of albino rat, 56.5% of pigmented mouse, and 50.8% of albino mouse OCT scans. The percentage of ideal ORB presentation in B-scans was 11.7% in minipigs, 73.8% in rabbits, and 80.0%, 91.0%, 28.5%, and 62.5% in pigmented rats and mice and albino rats and mice, respectively. The interrater evaluation for both attributes showed substantial to perfect agreement in all species. Conclusions: The choriocapillaris is an easy and valid marker for identification of the outer retinal margin. ORB presentation likely varies due to differences in retinal anatomy and pigmentation between animal species and strains and between anatomic locations. Proper and consistent outer retinal margin and ORB identification are essential for research result reproducibility and translation.


Assuntos
Corioide/diagnóstico por imagem , Células Fotorreceptoras de Vertebrados/citologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Animais , Camundongos Endogâmicos C57BL , Coelhos , Ratos Endogâmicos BN , Ratos Wistar , Microscopia com Lâmpada de Fenda , Especificidade da Espécie , Suínos , Porco Miniatura , Tomografia de Coerência Óptica/métodos
4.
Toxicol Sci ; 157(1): 112-128, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123102

RESUMO

Non-human primates (NHPs) are currently considered to be the non-rodent species of choice for the preclinical safety assessment of single-stranded oligonucleotide (SSO) drugs. We evaluated minipigs as a potential alternative to NHPs to test the safety of this class of compounds. Four different phosphorothioated locked nucleic acid-based SSOs (3 antisense and 1 anti-miR), all with known safety profiles, were administered to minipigs using similar study designs and read-outs as in earlier NHP studies with the same compounds. The studies included toxicokinetic investigations, in-life monitoring, clinical and anatomic pathology. In the minipig, we demonstrated target engagement by the SSOs where relevant, and a similar toxicokinetic behavior in plasma, kidney, and liver when compared with NHPs. Clinical tolerability was similar between minipig and NHPs. For the first time, we showed similar and dose-dependent effects on the coagulation and complement cascade after intravenous dosing similar to those observed in NHPs. Similar to NHPs, morphological changes were seen in proximal tubular epithelial cells of the kidney, Kupffer cells, hepatocytes, and lymph nodes. Minipigs appeared more sensitive to the high-dose kidney toxicity of most of the selected SSOs than NHPs. No new target organ or off-target toxicities were identified in the minipig. The minipig did not predict the clinical features of human injection site reactions better than the NHPs, but histopathological similarities were observed between minipigs and NHPs. We conclude that there is no impediment, as default, to the use of minipigs as the non-rodent species in SSO candidate non-clinical safety packages.


Assuntos
Modelos Animais , Oligonucleotídeos/toxicidade , Porco Miniatura , Animais , Área Sob a Curva , Relação Dose-Resposta a Droga , Feminino , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Suínos , Distribuição Tecidual , Toxicocinética
5.
Exp Hematol ; 44(10): 964-974.e4, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27403535

RESUMO

Glycine is a key rate-limiting component of heme biosynthesis in erythropoietic cells, where the high intracellular glycine demand is primarily supplied by the glycine transporter 1 (GlyT1). The impact of intracellular glycine restriction after GlyT1 inhibition on hematopoiesis and iron regulation is not well established. We investigated the effects of a potent and selective inhibitor of GlyT1, bitopertin, on erythropoiesis and iron homeostasis in rats. GlyT1 inhibition significantly affected erythroid heme biosynthesis, manifesting as microcytic hypochromic regenerative anemia with a 20% steady-state reduction in hemoglobin. Reduced erythropoietic iron utilization was characterized by down-regulation of the transferrin receptor 1 (TfR1) on reticulocytes and modest increased iron storage in the spleen. Hepatic hepcidin expression was not affected. However, under the condition of reduced heme biosynthesis with reduced iron reutilization and increased storage iron, hepcidin at the lower and higher range of normal showed a striking role in tissue distribution of iron. Rapid formation of iron-positive inclusion bodies (IBs) was observed in circulating reticulocytes, with an ultrastructure of iron-containing polymorphic mitochondrial remnants. IB or mitochondrial iron accumulation was absent in bone marrow erythroblasts. In conclusion, GlyT1 inhibition in rats induced a steady-state microcytic hypochromic regenerative anemia and a species-specific accumulation of uncommitted mitochondrial iron in reticulocytes. Importantly, this glycine-restricted anemia provides no feedback signal for increased systemic iron acquisition and the effects reported are pathogenetically distinct from systemic iron-overload anemias and erythropoietic disorders such as acquired sideroblastic anemia.


Assuntos
Eritropoese/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Piperazinas/farmacologia , Sulfonas/farmacologia , Anemia Hipocrômica/sangue , Anemia Hipocrômica/etiologia , Anemia Hipocrômica/metabolismo , Animais , Biomarcadores , Células Sanguíneas/metabolismo , Medula Óssea/metabolismo , Inclusões Eritrocíticas/metabolismo , Inclusões Eritrocíticas/patologia , Inclusões Eritrocíticas/ultraestrutura , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/patologia , Eritrócitos Anormais/ultraestrutura , Feminino , Ferritinas/metabolismo , Hepcidinas/metabolismo , Piperazinas/efeitos adversos , Protoporfirinas/metabolismo , Ratos , Reticulócitos/metabolismo , Sulfonas/efeitos adversos , Transferrina/metabolismo
6.
Toxicol Pathol ; 44(3): 398-413, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26680760

RESUMO

There is increased interest to use minipigs in ocular toxicology studies due to their anatomical similarities with human eyes and as a substitute for nonhuman primates. This requires adaptation of enhanced optical coherence tomography (OCT) techniques and of ocular relevant immunohistochemistry (IHC) or in situ hybridization (ISH) markers to porcine eyes. In this study, OCT and OCT angiography (AngioOCT) were performed on adult Göttingen minipigs. To increase structural information on retinal and choroidal vasculature, OCT data were speckle denoized and choroidal blood vessels were segmented with threshold filtering. In addition, we established a set of IHC and ISH markers on Davidson's fixed paraffin-embedded minipig eyes: neurofilament-160, neuronal nuclei, calretinin, protein kinase C-α, vimentin, glial fibrillary acidic protein, glutamine synthetase, ionized calcium-binding adaptor molecule-1, rhodopsin, synaptophysin, postsynaptic density protein-95, retinal pigment epithelium (RPE)-specific protein-65, von Willebrand factor, α-smooth muscle actin, desmin, and Ki-67, thus enabling visualization of retinal neuronal and glial cells, photoreceptors, synapses, RPE, blood vessels, myocytes, macrophages, or cell proliferation. Using ISH, transcripts of vascular endothelial growth factor A, angiopoietin-2, and endothelial tyrosine kinase were visualized. This article describes for the first time in minipig eyes speckle noise-free OCT, AngioOCT, and a set of IHC/ISH markers on Davidson's fixed paraffin-embedded tissues and helps to establish the minipig for ocular toxicology and pharmacology studies.


Assuntos
Biomarcadores/análise , Olho/química , Olho/diagnóstico por imagem , Imuno-Histoquímica , Tomografia de Coerência Óptica , Animais , Feminino , Masculino , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Suínos , Porco Miniatura
7.
Int J Alzheimers Dis ; 2012: 289412, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316412

RESUMO

The γ-secretase complex is a promising target in Alzheimer's disease because of its role in the amyloidogenic processing of ß-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oral γ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA