Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 14(1): 19386, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169123

RESUMO

Replacing cereals with food leftovers could reduce feed-food competition and keep nutrients and energy in the food chain. Former food products (FFPs) are industrial food leftovers no more intended for human but still suitable as alternative and sustainable feedstuffs for monogastric. In this study, omics approaches were applied to evaluate the impact of dietary FFPs on pig liver proteome and plasma peptidome. Thirty-six Swiss Large White male castrated pigs were randomly assigned to three dietary treatments [control (CTR), 30% CTR replaced with salty FFP (SA), 30% CTR replaced with sugary FFP (SU)] from the start of the growing phase (22.4 ± 1.7 kg) until slaughtering (110 ± 3 kg). The low number of differentially regulated proteins in each comparison matrix (SA/SU vs. CTR) and the lack of metabolic interaction indicated a marginal impact on hepatic lipid metabolism. The plasma peptidomics investigation showed low variability between the peptidome of the three dietary groups and identified three possible bioactive peptides in the SA group associated with anti-hypertension and vascular homeostasis regulation. To conclude, the limited modulation of liver proteome and plasma peptidome by the SA and SU diets strenghtened the idea of reusing FFPs as feed ingredients to make pig production more sustainable.


Assuntos
Fígado , Animais , Fígado/metabolismo , Suínos , Masculino , Ração Animal/análise , Proteoma/metabolismo , Proteoma/análise , Proteômica/métodos , Peptídeos/sangue , Peptídeos/metabolismo
2.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893578

RESUMO

BACKGROUND: The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS: The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS: Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS: The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.


Assuntos
Antocianinas , Antivirais , Mirtilos Azuis (Planta) , Proteases 3C de Coronavírus , Extratos Vegetais , Inibidores de Proteases , SARS-CoV-2 , Mirtilos Azuis (Planta)/química , Antocianinas/farmacologia , Antocianinas/química , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Humanos , Simulação de Acoplamento Molecular , COVID-19/virologia , Glucosídeos
3.
ACS Infect Dis ; 10(6): 2222-2238, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717116

RESUMO

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.


Assuntos
Descoberta de Drogas , Oxidiazóis , Trypanosoma brucei brucei , Oxidiazóis/farmacologia , Oxidiazóis/química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Antiparasitários/farmacologia , Antiparasitários/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Leishmania infantum/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/química
4.
Bioorg Chem ; 144: 107164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306824

RESUMO

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Assuntos
Neoplasias Pulmonares , Melanoma Experimental , Animais , Camundongos , Septinas , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Mol Cell Endocrinol ; 566-567: 111908, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36868453

RESUMO

Low-grade chronic inflammation in obesity is associated with leptin resistance. In order to alleviate this pathological condition, bioactive compounds capable of attenuating oxidative stress and inflammation have been researched, and bergamot (Citrus bergamia) presents these properties. The aim was to evaluate the effect of bergamot leaves extract on leptin resistance in obese rats. Animals were divided into 2 groups: control diet (C, n = 10) and high sugar-fat diet (HSF, n = 20) for 20 weeks. After detecting hyperleptinemia, animals were divided to begin the treatment with bergamot leaves extract (BLE) for 10 weeks: C + placebo (n = 7), HSF + placebo (n = 7), and HSF + BLE (n = 7) by gavage (50 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; adipose tissue dysfunction; inflammatory, oxidative markers and hypothalamic leptin pathway. HSF group presented obesity, metabolic syndrome, adipose tissue dysfunction, hyperleptinemia and leptin resistance compared to control group. However, the treated group showed a decrease in caloric consumption and attenuation of insulin resistance. Moreover, dyslipidemia, adipose tissue function, and leptin levels showed an improvement. At the level of the hypothalamus, the treated group showed a reduction of oxidative stress, inflammation and modulation of leptin signaling. In conclusion, BLE properties were able to improve leptin resistance through recovery of the hypothalamic pathway.


Assuntos
Citrus , Leptina , Ratos , Animais , Leptina/metabolismo , Citrus/metabolismo , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Inflamação/complicações , Dieta Hiperlipídica , Folhas de Planta/metabolismo
6.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771023

RESUMO

Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.


Assuntos
Malus , Neoplasias , Humanos , NF-kappa B/metabolismo , Malus/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
7.
Talanta ; 252: 123824, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027618

RESUMO

Mpro represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen Mpro inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many Mpro inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant Mpro with natural extracts and identifying compounds adducted to the residues within the Mpro active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of Mpro. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 Mpro active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Proteases 3C de Coronavírus , Peptídeo Hidrolases , Proteômica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Simulação de Acoplamento Molecular , Misturas Complexas , Antivirais/farmacologia , Antivirais/química
8.
Int J Food Sci Nutr ; 74(1): 64-71, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36519349

RESUMO

Metabolic Syndrome (MetS), inflammation and oxidative stress contribute to impairment of skeletal muscle function. Bergamot (Citrus bergamia) leaf extract (BLE) has shown protective effects against comorbidities associated with MetS through its anti-inflammatory and antioxidant effects. The aim of this work was to elucidate the antioxidant and anti-inflammatory activity of BLE in skeletal muscles in an experimental model of MetS. Once metabolic syndrome was diagnosed, animals were divided into groups receiving different treatments for 10 weeks, including control diet (n = 10), control + BLE (n = 10), High Sugar-fat diet (HSF) (n = 10), HSF + BLE (n = 10). Evaluation included nutritional, metabolic and hormonal analyses, along with measurements of inflammatory status and oxidative stress in soleus and extensor digitorum longus (EDL) muscles. BLE showed positive metabolic effects, with a reduction of plasma triglycerides and insulin resistance and an increase in high-density lipoprotein cholesterol, and protective activity against oxidative stress and inflammation in Soleus and EDL muscles in animals with MetS.


Assuntos
Citrus , Síndrome Metabólica , Óleos Voláteis , Animais , Antioxidantes/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Anti-Inflamatórios , Inflamação/metabolismo , Extratos Vegetais
9.
Adv Redox Res ; 7: None, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798747

RESUMO

Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7ß-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7ß-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.

10.
Antioxidants (Basel) ; 11(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139832

RESUMO

Human serum albumin (HSA) represents the most abundant plasma protein, with relevant antioxidant activity due to the presence of the sulfhydryl group on cysteine at position 34 (Cys34), the latter being one of the major target sites for redox-dependent modifications leading to the formation of mixed disulfide linkages with low molecular weight thiols. Thiolated forms of HSA (Thio-HSA) may be useful as markers of an unbalanced redox state and as a potential therapeutic target. Indeed, we have previously reported that albumin Cys34 can be regenerated in vitro by N-Acetylcysteine (NAC) through a thiol-disulfide breaking mechanism, with a full recovery of the HSA antioxidant and antiplatelet activities. With this case study, we aimed to assess the ability of NAC to regenerate native mercaptoalbumin (HSA-SH) and the plasma antioxidant capacity in subjects with redox unbalance, after oral and intravenous administration. A placebo-controlled crossover study, single-blinded, was performed on six hypertensive subjects, randomized into two groups, on a one-to-one basis with NAC (600 mg/die) or a placebo, orally and intravenously administered. Albumin isoforms, HSA-SH, Thio-HSA, and glutathione levels were evaluated by means of mass spectrometry. The plasma antioxidant activity was assessed by a fluorimetric assay. NAC, orally administered, significantly decreased the Thio-HSA levels in comparison with the pre-treatment conditions (T0), reaching the maximal effect after 60 min (-24.7 ± 8%). The Thio-HSA reduction was accompanied by a concomitant increase in the native HSA-SH levels (+6.4 ± 2%). After intravenous administration of NAC, a significant decrease of the Thio-HSA with respect to the pre-treatment conditions (T0) was observed, with a maximal effect after 30 min (-68.9 ± 10.6%) and remaining significant even after 6 h. Conversely, no effect on the albumin isoforms was detected with either the orally or the intravenously administered placebo treatments. Furthermore, the total antioxidant activity of the plasma significantly increased after NAC infusion with respect to the placebo (p = 0.0089). Interestingly, we did not observe any difference in terms of total glutathione corrected for hemoglobin, ruling out any effect of NAC on the intracellular glutathione and supporting its role as a disulfide-breaking agent. This case study confirms the in vitro experiments and demonstrates for the first time that NAC is able to regenerate mercaptoalbumin in vivo, allowing us to hypothesize that the recovery of Cys34 content can modulate in vivo oxidative stress and, hopefully, have an effect in oxidative-based diseases.

11.
Antioxidants (Basel) ; 11(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009220

RESUMO

Human serum albumin (HSA) has an important antioxidant activity due to the presence of the reduced cysteine at position 34, which represents the most abundant free thiol in the plasma. In oxidative-based diseases, HSA undergoes S-thiolation (THIO-HSA) with changes in the antioxidant function of albumin that could contribute to the progression of the disease. The aim of this study was to verify, for the first time, the different burdens of THIO-HSA, glycated HSA (GLY-HSA), and advanced glycation end products (AGE) accumulation both in type 2 diabetes mellitus (T2DM) patients and in non-diabetic patients, with or without coronary heart disease (CHD). In this study, we assessed the presence of modified forms of HSA, THIO-HSA, and GLY-HSA by means of mass spectrometry in 33 patients with both T2DM and CHD, in 31 patients with T2DM and without CHD, in 30 patients without diabetes with a history of CHD, and 27 subjects without diabetes and CHD. All the patients' anthropometric and clinical data were recorded including age, sex, duration of diabetes, body mass index (BMI), blood pressure, and history of CHD defined with anamnestic data. Metabolic parameters, such as fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), lipids, pentosidine, AGE, receptor for advanced glycation end-products (RAGE) and its soluble form (sRAGE), were measured. AGE and pentosidine are significantly higher in T2DM patients with and without CHD with respect to non-diabetic patients with CHD and control subjects. RAGE levels are significantly higher in T2DM patients with respect to non-diabetic patients, and among T2DM patients, the group with CHD showed significantly higher RAGE levels than those without CHD (217 ± 171 pg/mL and 140 ± 61 pg/mL, respectively). Albumin isoforms discriminate between non-diabetic patients with CHD and T2DM patients with and without CHD and control subjects, with GLY-HSA levels higher in T2DM with and without CHD, and THIO-HSA higher in CHD patients without T2DM. Finally, we demonstrated that the oxidized forms of HSA can increase the expression of the inflammatory cytokine Tumor Necrosis Factor-alpha (TNFα) in monocytic cells. In patients with CHD, GLY-HSA and THIO-HSA have a different prevalent distribution, the first one prevailing in patients with T2DM and the second one in patients without T2DM. These findings suggest that albumin quality and homeostasis balance between glyco-oxidation and thiolation might have an impact on the antioxidant defense system in cardiovascular diseases.

12.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009298

RESUMO

The qualitative profile of thinned apple polyphenols (TAP) fraction (≈24% of polyphenols) obtained by purification through absorbent resin was fully investigated by LC-HRMS in positive and negative ion mode and using ESI source. A total of 68 polyphenols were identified belonging to six different classes: flavanols, flavonols, dihydrochalchones, flavanones, flavones and organic and phenolic acids. The antioxidant and anti-inflammatory activities were then investigated in cell models with gene reporter for NRF2 and NF-κB and by quantitative proteomic (label-free and SILAC) approaches. TAP dose-dependently activated NRF2 and in the same concentration range (10-250 µg/mL) inhibited NF-κB nuclear translocation induced by TNF-α and IL-1α as pro-inflammatory promoters. Proteomic studies elucidated the molecular pathways evoked by TAP treatment: activation of the NRF2 signaling pathway, which in turn up-regulates protective oxidoreductases and their nucleophilic substrates such as GSH and NADPH, the latter resulting from the up-regulation of the pentose phosphate pathway. The increase in the enzymatic antioxidant cellular activity together with the up-regulation of the heme-oxygenase would explain the anti-inflammatory effect of TAP. The results suggest that thinned apples can be considered as a valuable source of apple polyphenols to be used in health care products to prevent/treat oxidative and inflammatory chronic conditions.

13.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012291

RESUMO

Advanced quantitative bioanalytical approaches in combination with network analyses allow us to answer complex biological questions, such as the description of changes in protein profiles under disease conditions or upon treatment with drugs. In the present work, three quantitative proteomic approaches-either based on labelling or not-in combination with network analyses were applied to a new in vitro cellular model of nonalcoholic fatty liver disease (NAFLD) for the first time. This disease is characterized by the accumulation of lipids, inflammation, fibrosis, and insulin resistance. Hepatic G2 cells were used as model, and NAFLD was induced by a complex of oleic acid and bovine albumin. The development of the disease was verified by lipid vesicle staining and by the increase in the expression of perilipin-2-a protein constitutively present in the vesicles during NAFLD. The nLC-MS/MS analyses of peptide samples obtained from three different proteomic approaches resulted in accurate and reproducible quantitative data of protein fold-change expressed in NAFLD versus control cells. The differentially regulated proteins were used to evaluate the involved and statistically enriched pathways. Network analyses highlighted several functional and disease modules affected by NAFLD, such as inflammation, oxidative stress defense, cell proliferation, and ferroptosis. Each quantitative approach allowed the identification of similar modulated pathways. The combination of the three approaches improved the power of statistical network analyses by increasing the number of involved proteins and their fold-change. In conclusion, the application of advanced bioanalytical approaches in combination with pathway analyses allows the in-depth and accurate description of the protein profile of an in vitro cellular model of NAFLD by using high-resolution quantitative mass spectrometry data. This model could be extremely useful in the discovery of new drugs to modulate the equilibrium NAFLD health state.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Bovinos , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Perilipina-2/metabolismo , Proteômica , Espectrometria de Massas em Tandem
14.
Mol Cell Endocrinol ; 556: 111721, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917880

RESUMO

Bergamot citrus (Citrus bergamia Risso et Poiteau), have been used as a strategy to prevent or treat comorbidities associated with metabolic syndrome parameters, such as cardiorenal metabolic syndrome (CRMS). The aim was to test the effect of bergamot leaf extract on CRMS and associated pathophysiological factors in rats fed with a high sugar-fat diet. Animals were divided into two experimental groups with control diet (Control, n = 30) and high sugar-fat diet (HSF, n = 30) for 20 weeks. Once CRMS was detected, animals were redivided to begin the treatment with Bergamot Leaf Extract (BLE) by gavage (50 mg/kg) for 10 weeks: control diet + placebo (Control, n = 09), control diet + BLE (Control + BLE, n = 09), HSF diet + placebo (HSF, n = 09), HSF + BLE (n = 09). Evaluation included nutritional, metabolic and hormonal analysis; and renal and cardiac parameters. HSF groups presented obesity, dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, insulin resistance. BLE showed protection against effects on hypertriglyceridemia, insulin resistance, renal damage, and structural and functional alterations of the heart. Conclusion: Bergamot leaf extract shows potential as a therapeutic to treat CRMS in animals fed with a high sugar-fat diet.


Assuntos
Citrus , Resistência à Insulina , Síndrome Metabólica , Óleos Voláteis , Animais , Citrus/química , Dieta Hiperlipídica/efeitos adversos , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Açúcares/uso terapêutico
15.
J Appl Toxicol ; 42(12): 1948-1961, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35854198

RESUMO

Indoxyl sulphate (IS) is a uremic toxin accumulating in the plasma of chronic kidney disease (CKD) patients. IS accumulation induces side effects in the kidneys, bones and cardiovascular system. Most studies assessed IS effects on cell lines by testing higher concentrations than those measured in CKD patients. Differently, we exposed a human microvascular endothelial cell line (HMEC-1) to the IS concentrations measured in the plasma of healthy subjects (physiological) or CKD patients (pathological). Pathological concentrations reduced cell proliferation rate but did not increase long-term oxidative stress level. Indeed, total protein thiols decreased only after 24 h of exposure in parallel with an increased Nrf-2 protein expression. IS induced actin cytoskeleton rearrangement with formation of stress fibres. Proteomic analysis supported this hypothesis as many deregulated proteins are related to actin filaments organization or involved in the endothelial to mesenchymal transition. Interestingly, two proteins directly linked to cardiovascular diseases (CVD) in in vitro and in vivo studies underwent deregulation: COP9 signalosome complex subunit 9 and thrombomodulin. Future experiments will be needed to investigate the role of these proteins and the signalling pathways in which they are involved to clarify the possible link between CKD and CVD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Indicã/toxicidade , Indicã/metabolismo , Toxinas Urêmicas , Células Endoteliais/metabolismo , Proteômica , Doenças Cardiovasculares/metabolismo
16.
J Pharm Biomed Anal ; 219: 114948, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35907317

RESUMO

Herein it is reported the development and application of two chromatographic assays for the measurement of the activity of 3-Hydroxyanthranilate-3,4-dioxygenase (3HAO). Such an enzyme converts 3-Hydroxyanthranilic acid (3HAA) to 2-amino-3-carboxymuconic semialdehyde (ACMS), which undergo a spontaneous, non-enzymatic cyclization to produce quinolinic acid (QUIN). The enzyme activity was measured by quantitation of the substrate consumption over time either with spectrophotometric (UV) or mass spectrometric (MS) detection upon reversed-phase chromatographic separation. MS detection resulted more selective and sensitive, but less accurate and precise. However, both methods have sufficient sensitivity to allow the measurement of enzyme activity with consistent results compared to literature data. Since MS detection allowed less sample consumption it was used to calculate the kinetics parameters (i.e., Vmax and Kd) of recombinant 3HAO. Another MS-based method was then developed to measure the amount of QUIN produced, revealing an incomplete conversion of 3HAA to QUIN. As suggested by previous studies, the enzyme activity was apparently sensitive to the redox state of the enzyme thiols. In fact, thiol reducing agents such as dithiothreitol (DTT) and glutathione (GSH), can alter the enzyme activity although the investigation on the exact mechanism involved in such effect was beyond the scope of the research. Interestingly, edaravone (EDA) induced an in vitro suppression of QUIN production through direct, competitive 3HAO inhibition. EDA is a molecule approved for the treatment of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with an increase of QUIN concentrations in both serum and cerebrospinal fluid. Although EDA was reported to mitigate ALS progression its mode of action is still largely unknown. Some studies reported antioxidant and radical scavenger properties of EDA, but none confirm a direct activity as 3HAO enzyme inhibitor. Since QUIN is reported to be a neurotoxic metabolite, 3HAO inhibition can contribute to the beneficial effect of EDA in ALS, although such a mechanism must be then confirmed in vivo. However, EDA might be a convenient scaffold for the design of selective 3HAO inhibitors with potential applications in ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , 3-Hidroxiantranilato 3,4-Dioxigenase/química , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Edaravone/farmacologia , Humanos , Ácido Quinolínico/metabolismo
17.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740083

RESUMO

Enocianina is an anthocyanin-rich extract obtained from grape pomace. It is widely used as a colorant in the food industry and, in addition to anthocyanins, it also contains a variety of polyphenols. To understand whether enocianina, besides its coloring effect, may offer potential health benefit applications, we aimed to fully characterize the profile of four commercial enocianinas and assess their radical scavenging, enzymatic, antioxidant, and anti-inflammatory activities. LC-ESI-MS/MS analysis identified 90 phytochemicals. The relative content of each anthocyanin was assessed by a semi-quantitative analysis, with malvidin derivatives being the most abundant. UV-VIS spectroscopy detected total amounts of polyphenols and anthocyanins of 23% and 3.24%, respectively, indicating that anthocyanins represent a minor fraction of total polyphenols. Multiple linear regression analysis indicated that the radical scavenging activity is related to the total polyphenol content and not to anthocyanins. All four enocianinas dose-dependently activate Nrf2, and such activity was correlated with catechol-containing polyphenol content. Finally, all enocianinas showed dose-dependent anti-inflammatory activity, which at the highest concentrations tested was closely related to the total polyphenol content and was explained by radical scavenging, Nrf2 activation, and other mechanisms related to the polyphenolic components.

18.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614132

RESUMO

Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and cardiovascular system (CVS), although its pathogenicity is still questioned since studies evaluating its side effects lack homogeneity. Here, we investigated the effects of physiological and pathological urea concentrations on a human endothelial cell line from the microcirculation (Human Microvascular Endothelial Cells-1, HMEC-1). Urea (5 g/L) caused a reduction in the proliferation rate after 72 h of exposure and appeared to be a potential endothelial-to-mesenchymal transition (EndMT) stimulus. Moreover, urea induced actin filament rearrangement, a significant increase in matrix metalloproteinases 2 (MMP-2) expression in the medium, and a significant up- or down-regulation of other EndMT biomarkers (keratin, fibrillin-2, and collagen IV), as highlighted by differential proteomic analysis. Among proteins whose expression was found to be significantly dysregulated following exposure of HMEC-1 to urea, dimethylarginine dimethylaminohydrolase (DDAH) and vasorin turned out to be down-regulated. Both proteins have been directly linked to cardiovascular diseases (CVD) by in vitro and in vivo studies. Future experiments will be needed to deepen their role and investigate the signaling pathways in which they are involved to clarify the possible link between CKD and CVD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Células Endoteliais/metabolismo , Ureia/farmacologia , Proteômica , Diálise Renal , Insuficiência Renal Crônica/metabolismo , Proteínas/metabolismo , Doenças Cardiovasculares/metabolismo
19.
J. bras. nefrol ; 43(4): 460-469, Dec. 2021. graf
Artigo em Inglês, Português | LILACS | ID: biblio-1350919

RESUMO

Abstract Introduction: The receptor for AGEs (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface receptors expressed in many organs, among them, the kidneys. When activated, RAGE leads to a sequence of signaling that results in inflammation and oxidative stress, both involved in kidney disease pathogenesis. Gamma-oryzanol (γOz) comprises a mixture of ferulic acid (FA) esters and phytosterols (sterols and triterpene alcohols) mainly found in rice, with antioxidant and anti-inflammatory activities. Aim: To evaluate the effect of γOz to reduce renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to a high sugar-fat diet. Methods: Male Wistar rats (±187g) were randomly divided into two experimental groups: control (n = 7 animals) and high sugar-fat diet (HSF, n = 14 animals) for 20 weeks. After this period, when the presence of renal disease risk factors was detected in the HSF group (insulin resistance, dyslipidemia, increased systolic blood pressure and obesity), the HSF animals were divided to begin the treatment with γOz or continue receiving only HSF for 10 more weeks. Results: No effect of γOz on obesity and metabolic parameters was observed. However, kidney inflammation and oxidative stress decreased as soon as RAGE levels were reduced in HSF + γOz. Conclusion: It is possible to conclude that the gamma- oryzanol was effective in reducing inflammation and oxidative stress in the kidney by modulating the AGEs/RAGE axis.


Resumo Introdução: O receptor para AGEs (RAGE) é um membro multiligante da superfamília das imunoglobulinas dos receptores de superfície celular expresso em muitos órgãos, entre eles, os rins. Quando ativado, o RAGE leva a uma sequência de sinalização que resulta em inflamação e estresse oxidativo, ambos envolvidos na patogênese de doenças renais. O gama-orizanol (γOz) compreende uma mistura de ésteres de ácido ferúlico (AF) e fitoesteróis (esteróis e álcoois triterpenos) encontrados principalmente no arroz, com atividades antioxidantes e anti-inflamatórias. Objetivo: Avaliar o efeito do γOz para reduzir a inflamação renal e o estresse oxidativo pela modulação do eixo RAGE/AGEs em animais submetidos a uma dieta rica em gordura e açúcar. Métodos: Ratos Wistar machos (±187g) foram divididos aleatoriamente em dois grupos experimentais: controle (n = 7 animais) e dieta rica em gordura e açúcar (HSF, do inglês high sugar-fat diet, n = 14 animais) por 20 semanas. Após este período, quando foi detectada a presença de fatores de risco de doença renal no grupo HSF (resistência à insulina, dislipidemia, aumento da pressão arterial sistólica e obesidade), os animais HSF foram divididos para iniciar o tratamento com γOz ou continuar recebendo apenas HSF por mais 10 semanas. Resultados: Não foi observado nenhum efeito do γOz na obesidade e nos parâmetros metabólicos. No entanto, a inflamação e o estresse oxidativo renais diminuíram assim que os níveis de RAGE foram reduzidos em HSF + γOz. Conclusão: É possível concluir que o gama- orizanol foi eficaz em reduzir a inflamação e o estresse oxidativo no rim pela modulação do eixo RAGE/AGEs.


Assuntos
Animais , Masculino , Ratos , Açúcares , Dieta Hiperlipídica , Fenilpropionatos , Ratos Wistar , Estresse Oxidativo , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA