Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 102(6): 1458-1468, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653693

RESUMO

Totally 15 novel flurbiprofen urea derivatives were synthesized bearing the thiadiazole ring. Their inhibition effects on tyrosinase were determined. 3c was found to be the strongest inhibitor with the IC50 value of 68.0 µM against tyrosinase. The enzyme inhibition types of the synthesized compounds were determined by examining the kinetic parameters. The inhibition type of 3c was determined as uncompetitive and the Ki value was calculated as 36.3 µM. Moreover, their cytotoxic effects on hepatocellular carcinoma (HepG2), colorectal carcinoma (HT-29), and melanoma (B16F10) cell lines were evaluated. According to the cytotoxicity results, 3l (IC50 = 14.11 µM) showed the highest cytotoxicity on the HT-29 cells, while 3o (IC50 = 4.22 µM) exhibited the strongest cytotoxic effect on HepG2 cell lines. Also, 3j (IC50 = 7.55 µM strongly affected B16F10. The effects of synthesized compounds on the healthy cell line were evaluated on the CCD-986Sk cell line. Molecular modelling studies have indicated the potential binding interactions of the uncompetitive inhibitor 3c with the enzyme-substrate complex.


Assuntos
Antineoplásicos , Flurbiprofeno , Tiadiazóis , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Flurbiprofeno/farmacologia , Ureia/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Antineoplásicos/química , Células HT29
2.
Artigo em Inglês | MEDLINE | ID: mdl-37594104

RESUMO

Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.

3.
J Cell Biochem ; 123(2): 406-416, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783058

RESUMO

Intracellular and extracellular regulatory factors promote the potency and self-renewal property of stem cells. Methionine is fundamental for protein synthesis and regulation of methylation reactions. Specifically, methionine metabolism in embryonic and fetal development processes regulates gene expression profile/epigenetic identity of stem cells to achieve pluripotency and cellular functions. We aimed to reveal the differences in methionine metabolism of bone marrow (BM)-mesenchymal stem cells (MSCs), umbilical cord blood (UCB)-MSCs, and cancer stem cells (CSCs), which reflect different metabolic profiles and developmental stages of stem cells. UCB-MSC, BM-MSCs, and breast CSCs were treated with different doses (0, 10, 25, 50, and 100 µM) of l-methionine. Cell surface marker and cell cycle assessment were performed by flow cytometry. Changes in gene expressions (OCT3/4, NANOG, DMNT1, DNMT3A, and DNMT3B, MAT2A, and MAT2B) with methionine supplementation were examined by quantitative real-time polymerase chain reaction and the changes in histone methylation (H3K4me3, H3K27me3) levels were demonstrated by western blot analysis. S-adenosylmethionine//S-adenosylhomocysteine (SAM/SAH) levels were evaluated by enzyme-linked immunosorbent assay. Cells that were exposed to different concentrations of l-methionine, were mostly arrested in the G0/G1 phase for each stem cell group. It was evaluated that BM-MSCs increased all gene expressions in the culture medium-containing 100 µM methionine, in addition to SAM/SAH levels. On the other hand, UCB-MSCs were found to increase OCT3/4, NANOG, and DNMT1 gene expressions and decrease MAT2A and MAT2B expressions in the culture medium containing 10 µM methionine. Moreover, an increase was observed in the He3K4me3 methylation profile. In addition, OCT3/4, NANOG, DNMT1, and MAT2B gene expressions in CSCs increased starting from the addition of 25 µM methionine. An increase was determined in H3K4me3 protein expression at 50 and 100 µM methionine-supplemented culture condition. This study demonstrates that methionine plays a critical role in metabolism and epigenetic regulation in different stem cell groups.


Assuntos
Células-Tronco Adultas/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metionina/farmacologia , Proteínas de Neoplasias/biossíntese , Células-Tronco Neoplásicas/metabolismo , Adulto , Feto , Humanos
4.
Curr Stem Cell Res Ther ; 16(2): 175-188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32652922

RESUMO

Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs. Upon fertilization, the zygote transforms metabolic reprogramming while implantation, embryonic development, organogenesis processes and after birth through adult life. Metabolism in stem cells is a concept that is relatively new to be enlightened. There are no adequate and comprehensive in vitro studies on the comparative analysis of the effects of one-carbon (1-C) metabolism on fetal and adult stem cells compared to embryonic and cancer stem cells' studies that have been reported recently. Since 1-C metabolism is linking parental environmental/ dietary factors and fetal development, investigating the epigenetic, genetic, metabolic and developmental effects on adult period is necessary. Several mutations and abnormalities in 1-C metabolism have been noted in disease changing from diabetes, cancer, pregnancy-related outcomes such as pre-eclampsia, spontaneous abortion, placental abruption, premature delivery, and cardiovascular diseases. In this review, the effects of 1-C metabolism, mainly the methionine and folate metabolism, in stem cells that exist in different developmental stages will be discussed.


Assuntos
Carbono/metabolismo , Placenta , Células-Tronco , Diferenciação Celular , Embrião de Mamíferos , Feminino , Humanos , Gravidez , Células-Tronco/metabolismo
5.
Adv Exp Med Biol ; 1212: 107-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31065940

RESUMO

Skin is the main organ that covers the human body and acts as a protective barrier between the human body and the environment. Skin tissue as a stem cell source can be used for transplantation in therapeutic application in terms of its properties such as abundant, easy to access, high plasticity and high ability to regenerate. The immunological profile of these cells makes it a suitable resource for autologous and allogeneic applications. The lack of major histo-compatibility complex 1 is also advantageous in its use. Epidermal stem cells are the main stem cells in the skin and are suitable cells in tissue engineering studies for their important role in wound repair. In the last 30 years, many studies have been conducted to develop substitutions that mimic human skin. Stem cell-based skin substitutions have been developed to be used in clinical applications, to support the healing of acute and chronic wounds and as test systems for dermatological and pharmacological applications. In this chapter, tissue specific properties of epidermal stem cells, composition of their niche, regenerative approaches and repair of tissue degeneration have been examined.


Assuntos
Regeneração , Pele/citologia , Células-Tronco/citologia , Engenharia Tecidual , Humanos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA