RESUMO
Mechanisms underlying potentiation of the anti-myeloma (MM) activity of ataxia telangiectasia Rad3 (ATR) antagonists by MAPK (Mitogen-activated protein kinases)-related extracellular kinase 1/2 (MEK1/2) inhibitors were investigated. Co-administration of the ATR inhibitor (ATRi) BAY1895344 (BAY) and MEK1/2 inhibitors, for example, cobimetinib, synergistically increased cell death in diverse MM cell lines. Mechanistically, BAY and cobimetinib blocked STAT3 Tyr705 and Ser727 phosphorylation, respectively, and dual dephosphorylation triggered marked STAT3 inactivation and downregulation of STAT3 (Signal transducer and activator of transcription 3) downstream targets (c-Myc and BCL-XL). Similar events occurred in highly bortezomib-resistant (PS-R) cells, in the presence of patient-derived conditioned medium, and with alternative ATR (e.g. M1774) and MEK1/2 (trametinib) inhibitors. Notably, constitutively active STAT3 c-MYC or BCL-XL ectopic expression significantly protected cells from BAY/cobimetinib. In contrast, transfection of cells with a dominant-negative form of STAT3 (Y705F) sensitized cells to cobimetinib, as did ATR shRNA knockdown. Conversely, MEK1/2 knockdown markedly increased ATRi sensitivity. The BAY/cobimetinib regimen was also active against primary CD138+ MM cells, but not normal CD34+ cells. Finally, the ATR inhibitor/cobimetinib regimen significantly improved survival in MM xenografts, including bortezomib-resistant models, with minimal toxicity. Collectively, these findings suggest that combined ATR/MEK1/2 inhibition triggers dual STAT3 Tyr705 and Ser727 dephosphorylation, pronounced downregulation of cytoprotective targets and MM cell death, warranting attention as a novel therapeutic strategy in MM.
RESUMO
Multiple myeloma (MM) incidence, mortality, and survival vary by race and ethnicity, but the causes of differences remain unclear. We investigated demographic, clinical, and molecular features of diverse MM patients to elucidate mechanisms driving clinical disparities. This study included 495 MM patients (self-reported Hispanic, n = 45; non-Hispanic Black, n = 52; non-Hispanic White, n = 398). Hispanic and non-Hispanic Black individuals had an earlier age of onset than non-Hispanic White individuals (53 and 57 vs 63 years, respectively, P < .001). There were no differences in treatment by race and ethnicity groups, but non-Hispanic Black patients had a longer time to hematopoietic cell transplant than non-Hispanic White patients (376 days vs 248 days; P = .01). Overall survival (OS) was improved for non-Hispanic Black compared with non-Hispanic White patients (HR, 0.50; 95% CI, 0.31-0.81; P = .005), although this association was attenuated after adjusting for clinical features (HR, 0.62; 95% CI, 0.37-1.03; P = .06). Tumor mutations in IRF4 were most common in Hispanic patients, and mutations in SP140, AUTS2, and SETD2 were most common in non-Hispanic Black patients. Differences in tumor expression of BCL7A, SPEF2, and ANKRD26 by race and ethnicity were observed. Clonal hematopoiesis was detected in 12% of patients and associated with inferior OS in non-Hispanic Black patients compared with patients without clonal hematopoiesis (HR, 4.36; 95% CI, 1.36-14.00). This study provides insight into differences in molecular features that may drive clinical disparities in MM patients receiving comparable treatment, with the novel inclusion of Hispanic individuals.