Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Food Chem X ; 22: 101483, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840723

RESUMO

The primary goal of this study was to assess the effect of selective fermentation on the nutritional and techno-functional characteristics of fermented millet-skim milk-based product. The product was made with HHB-311 biofortified pearl millet (PM) flour, skim milk powder, and isolated cultures (either alone or in combination) of Limosilactobacillus fermentum MS005 (LF) and Lactobacillus rhamnosus GG 347 (LGG). To optimize fermentation time, time intervals 8, 16, and 24 h were explored, while the temperature was kept 37 °C. Results of protein digestibility showed that LF (16 h) and LGG (24 h) fermented samples had significantly higher (P < 0.05) protein digestibility of 90.75 ± 1.6% and 93.76 ± 3.4%, respectively, than that of control (62.60 ± 2.6%). Further, 16 h fermentation with LF showed enhanced iron (39%) and zinc (14%) bioavailability. The results suggested that LF with 16 h fermentation is most suitable for making millet-based fermented products with superior techno-functional attributes and micronutrient bioavailability.

2.
Am J Clin Nutr ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710445

RESUMO

BACKGROUND: The effects of consuming hemp seed protein (HSP) as well as its hydrolysate-derived bioactive peptide (HSP+) on blood pressure (BP) has not, to our knowledge, been investigated in humans. OBJECTIVES: We aimed to investigate how consumption of HSP and its hydrolysate modulates 24-h systolic (SBP) and diastolic BP (DBP) and plasma biomarkers of BP compared with casein. METHODS: In a double-blind, randomized, crossover design trial, 35 adults who had mild hypertension with SBP between 130 and 160 mmHg and DBP ≤110 mmHg were recruited. Participants were randomly assigned to varying sequences of 3 6-wk treatments, 50 g casein/d, 50 g HSP/d, or 45 g HSP plus 5 g HSP-derived bioactive peptides/d (HSP+), separated by a 2-wk washout period. Treatment effects were assessed with a linear mixed model with repeated measures. RESULTS: Compared with casein, after HSP+ consumption, 24-h SBP and 24-h DBP decreased from 135.1 and 80.0 mmHg to 128.1 ± 1.6 (P < 0.0001) and 76.0 ± 1.4 mmHg (P < 0.0001), respectively, whereas these values were 133.5 ± 1.6 and 78.9 ± 1.4 mmHg after HSP consumption (P < 0.0001). There were no differences between the HSP and HSP+ consumption in plasma angiotensin-converting enzyme (ACE) activity, renin, or nitric oxide (NO) concentrations. However, these 2 treatments were able to lower both ACE and renin activities and raise NO concentration in plasma compared with casein. CONCLUSIONS: These results suggest that hemp protein consumption, as well as in combination with bioactive peptides, may have a role in the dietary management of hypertension. This trial was registered at clinicaltrials.gov as NCT03508895.

3.
Foods ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959097

RESUMO

Yellow field peas (Pisum sativum L.) hold significant value for producers, researchers, and ingredient manufacturers due to their wealthy composition of protein, starch, and micronutrients. The protein quality in peas is influenced by both intrinsic factors like amino acid composition and spatial conformations and extrinsic factors including growth and processing conditions. The existing literature substantiates that the structural modulation and optimization of functional, organoleptic, and nutritional attributes of pea proteins can be obtained through a combination of chemical, physical, and enzymatic approaches, resulting in superior protein ingredients. This review underscores recent methodologies in pea protein extraction aimed at enhancing yield and functionality for diverse food systems and also delineates existing research gaps related to mitigating off-flavor issues in pea proteins. A comprehensive examination of conventional dry and wet methods is provided, in conjunction with environmentally friendly approaches like ultrafiltration and enzyme-assisted techniques. Additionally, the innovative application of hydrodynamic cavitation technology in protein extraction is explored, focusing on its prospective role in flavor amelioration. This overview offers a nuanced understanding of the advancements in pea protein extraction methods, catering to the interests of varied stakeholders in the field.

4.
J Agric Food Chem ; 71(43): 16323-16330, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856319

RESUMO

The aim of this work was to determine the structural requirements for peptides that inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. The data set used consisted of 19 oligopeptides that had been identified through mass spectrometry analysis of enzymatic digests of yellow field pea protein. The structure-function relationship was analyzed by partial least squares regression using the 5z scores. A nine-component model was created from 16 peptides for AChE inhibitory peptides (Q2 = 67.2% and R2 = 0.9974), while three data sets were prepared for BuChE inhibitory peptides to improve the quality of the models (Q2 = 26.7-46.4% and R2 = 0.9577-0.9958). The most active peptides from the PLS models have threonine, leucine, alanine, and valine at the N terminal, asparagine, histidine, proline, and arginine at the second position, with aspartic acid and serine at the third, and arginine at the C terminal.


Assuntos
Doença de Alzheimer , Proteínas de Ervilha , Humanos , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Proteínas de Ervilha/metabolismo , Relação Quantitativa Estrutura-Atividade , Oligopeptídeos , Arginina , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
5.
Plant Foods Hum Nutr ; 78(4): 630-642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698772

RESUMO

Cucumis callosus (Kachri) is an under-exploited fruit of the Cucurbitaceae family, distributed majorly in the arid regions of India in the states of Haryana, Rajasthan, and Gujarat. The fruit is traditionally used by the native people at a small scale by home-level processing. It is a perennial herb that has been shown to possess therapeutic potential in certain disorders. In several studies, the antioxidant, anti-hyperlipidaemic, anti-diabetic, anti-cancerous, anti-microbial, and cardioprotective properties of Kachri have been reported. The fruit has a good nutritional value in terms of high percentages of protein, carbohydrates, essential fatty acids, phenols, and various phytochemicals. Also, gamma radiation treatment has been used on this crop to reduce total bacterial counts (TBC), ensuring safety from pathogens during the storage period of the fruit and its products. These facts lay down a foundation for the development of functional food formulations and nutraceuticals of medicinal value from this functionally rich crop. Processing of traditionally valuable arid region foods into functional foods and products can potentially increase the livelihood and nutritional security of people globally. Therefore, this review focuses on the therapeutic and pharmacological potentials of the Kachri fruit in the management of non-communicable diseases (NCDs) namely, diabetes, cancer, and hyperlipidemia. Graphical abstract of the review.


Assuntos
Cucumis , Doenças não Transmissíveis , Humanos , Doenças não Transmissíveis/tratamento farmacológico , Índia , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/análise
6.
Membranes (Basel) ; 13(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37755189

RESUMO

The aim of this paper was to determine the emulsification properties of protein aggregates obtained from heat pretreated yellow field pea protein concentrate (PPC). PPC dispersions were prepared in distilled water (adjusted to pH 3.0, 5.0, 7.0, or 9.0), heated in a water bath (100 °C) for 30 min, centrifuged and the supernatant passed first through a 30 kDa membrane and, then, the first retentate (>30 kDa) through a 50 kDa membrane. The 50 kDa membrane separation yielded a second retentate (>50 kDa proteins), which was isolated for emulsification studies. The near UV circular dichroic spectra of the protein samples showed more unfolded structures at pH 3.0 and 5.0 than at pH 7.0 and 9.0. The presence of small and spherical oil droplets of emulsions stabilized by the >50 kDa proteins at pH 3.0, 7.0, and 9.0 was confirmed by confocal laser scanning microscopy images. Emulsions stabilized at pH 7.0 and 9.0 had a narrower size distribution range than at pH 3.0 and 5.0. A narrow oil droplet size distribution range and lower interfacial protein concentrations of the emulsions stabilized by the >50 kDa proteins were observed at the corresponding pH of the heat treatment when compared to other pH values. Emulsions stabilized by the >50 kDa proteins exhibited a relatively low flocculation and coalescence index, which infers relative stability. The results from this work suggest that heat pretreatment of the PPC led to the formation of new protein aggregates, especially FT9 with enhanced emulsification properties, at some of the test conditions when compared to the unheated PPC.

7.
Mar Drugs ; 21(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623703

RESUMO

Inflammation, hypertension, and negative heart health outcomes including cardiovascular disease are closely linked but the mechanisms by which inflammation can cause high blood pressure are not yet fully elucidated. Cyclooxygenase (COX) enzymes play a role in pain, inflammation, and hypertension development, and inhibition of these enzymes is currently of great interest to researchers and pharmaceutical companies. Non-steroidal anti-inflammatory drugs are the drug of choice in terms of COX inhibition but can have negative side effects for consumers. Functional food ingredients containing cyclooxygenase inhibitors offer a strategy to inhibit cyclooxygenases without negative side effects. Several COX inhibitors have been discovered, to date, from marine and other resources. We describe here, for the first time, the generation and characterization of a bioactive hydrolysate generated using Viscozyme® and Alcalase from the red microalga Porphyridium sp. The hydrolysate demonstrates in vitro COX-1 inhibitory activity and antihypertensive activity in vivo, assessed using spontaneously hypertensive rats (SHRs). Peptides were identified and sequenced using MS and assessed using an in silico computational approach for potential bioactivities. The peptides predicted to be bioactive, including GVDYVRFF, AIPAAPAAPAGPKLY, and LIHADPPGVGL were chemically synthesized and cyclooxygenase inhibition was confirmed. Peptides AIPAAPAAPAGPKLY and LIHADPPGVGL had COX-1 IC50 values of 0.2349 mg/mL (0.16 µM) and 0.2193 mg/mL (0.2 µM), respectively. The hydrolysate was included in a food carrier (jelly candies) and an antihypertensive effect was observed in SHRs.


Assuntos
Hipertensão , Porphyridium , Animais , Ratos , Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Dor , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase , Peptídeos/farmacologia
8.
J Med Food ; 26(10): 705-720, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646629

RESUMO

After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.


Assuntos
Probióticos , Humanos , Probióticos/uso terapêutico , Probióticos/metabolismo , Inflamação
9.
Plant Foods Hum Nutr ; 78(2): 233-242, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947371

RESUMO

Himanthalia elongata is a brown seaweed containing several nutritional compounds and bioactive substances including antioxidants, dietary fibre, vitamins, fatty acids, amino acids, and macro- and trace- elements. A variety of bioactive compounds including phlorotannins, flavonoids, dietary fucoxanthin, hydroxybenzoic acid, hydroxycinnamic acid, polyphenols and carotenoids are also present in this seaweed. Multiple comparative studies were carried out between different seaweed species, wherein H. elongata was determined to exhibit high antioxidant capacity, total phenolic content, fucose content and potassium concentrations compared to other species. H. elongata extracts have also shown promising anti-hyperglycaemic and neuroprotective activities. H. elongata is being studied for its potential industrial food applications. In new meat product formulations, it lowered sodium content, improved phytochemical and fiber content in beef patties, improved properties of meat gel/emulsion systems, firmer and tougher with improved water and fat binding properties. This narrative review provides a comprehensive overview of the nutritional composition, bioactive properties, and food applications of H. elongata.


Assuntos
Phaeophyceae , Alga Marinha , Animais , Bovinos , Alga Marinha/química , Phaeophyceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis/farmacologia
10.
Compr Rev Food Sci Food Saf ; 22(3): 2197-2234, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994600

RESUMO

With the constant increase in protein demand globally, it is expedient to develop a strategy to effectively utilize protein, particularly those extracted from plant origin, which has been associated with low digestibility, poor techno-functional properties, and inherent allergenicity. Several thermal modification approaches have been developed to overcome these limitations and showed excellent results. Nevertheless, the excessive unfolding of the protein, aggregation of unfolded proteins, and irregular protein crosslinking have limited its application. Additionally, the increased consumer demand for natural products with no chemical additives has created a bottleneck for chemical-induced protein modification. Therefore, researchers are now directed toward other nonthermal technologies, including high-voltage cold plasma, ultrasound, high-pressure protein, etc., for protein modification. The techno-functional properties, allergenicity, and protein digestibility are greatly influenced by the applied treatment and its process parameters. Nevertheless, the application of these technologies, particularly high-voltage cold plasma, is still in its primary stage. Furthermore, the protein modification mechanism induced by high-voltage cold plasma has not been fully explained. Thus, this review meets the necessity to assemble the recent information on the process parameters and conditions for modifying proteins by high-voltage cold plasma and its impact on protein techno-functional properties, digestibility, and allergenicity.


Assuntos
Gases em Plasma , Gases em Plasma/farmacologia , Alérgenos , Proteínas/química
11.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982902

RESUMO

Amyotrophic lateral sclerosis (ALS) is regarded as a fatal neurodegenerative disease that is featured by progressive damage of the upper and lower motor neurons. To date, over 45 genes have been found to be connected with ALS pathology. The aim of this work was to computationally identify unique sets of protein hydrolysate peptides that could serve as therapeutic agents against ALS. Computational methods which include target prediction, protein-protein interaction, and peptide-protein molecular docking were used. The results showed that the network of critical ALS-associated genes consists of ATG16L2, SCFD1, VAC15, VEGFA, KEAP1, KIF5A, FIG4, TUBA4A, SIGMAR1, SETX, ANXA11, HNRNPL, NEK1, C9orf72, VCP, RPSA, ATP5B, and SOD1 together with predicted kinases such as AKT1, CDK4, DNAPK, MAPK14, and ERK2 in addition to transcription factors such as MYC, RELA, ZMIZ1, EGR1, TRIM28, and FOXA2. The identified molecular targets of the peptides that support multi-metabolic components in ALS pathogenesis include cyclooxygenase-2, angiotensin I-converting enzyme, dipeptidyl peptidase IV, X-linked inhibitor of apoptosis protein 3, and endothelin receptor ET-A. Overall, the results showed that AGL, APL, AVK, IIW, PVI, and VAY peptides are promising candidates for further study. Future work would be needed to validate the therapeutic properties of these hydrolysate peptides by in vitro and in vivo approaches.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Superóxido Dismutase-1/genética , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Enzimas Multifuncionais/metabolismo , Cinesinas/metabolismo , Flavoproteínas/metabolismo
12.
Crit Rev Food Sci Nutr ; 63(28): 9233-9261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35435771

RESUMO

Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.


Assuntos
Doença Celíaca , Glutens , Humanos , Glutens/efeitos adversos , Doença Celíaca/diagnóstico , Dieta Livre de Glúten/métodos , Predisposição Genética para Doença , Peptídeos
13.
Nutr Rev ; 81(6): 684-704, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36219789

RESUMO

Millet is consumed as a staple food, particularly in developing countries, is part of the traditional diet in a number of relatively affluent countries, and is gaining popularity throughout the world. It is a valuable dietary energy source. In addition to high caloric value, several health-promoting attributes have been reported for millet seeds. This review describes many nutritional characteristics of millet seeds and their derivatives that are important to human health: antioxidant, antihypertensive, immunomodulatory or anti-inflammatory, antibacterial or antimicrobial, hypocholesterolemic, hypoglycemic, and anti-carcinogenic potential, and their role as modulators of gut health. There are several varieties, but the main focus of this review is on pearl millet (Cenchrus americanus [synonym Pennisetum glaucum]), one of the most widely eaten millet crops grown in India, though other millet types are also covered. In this article, the health-promoting properties of the natural components (ie, proteins, peptides, polyphenols, polysaccharides, oil, isoflavones, etc.) present in millet seeds are discussed. Although many of these health benefits have been demonstrated using animal models in vitro studies, human intervention-feeding trials are required to confirm several of the potential health benefits of millet seeds. Based on the nutritional and health-promoting attributes known for pearl millet (discussed in this review), finger millet and foxtail millet are suggested as good candidates for use in future nutritional interventions for improved human health.


Assuntos
Milhetes , Pennisetum , Animais , Humanos , Polifenóis , Produtos Agrícolas , Pennisetum/química , Antioxidantes
14.
Compr Rev Food Sci Food Saf ; 22(1): 46-106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370116

RESUMO

In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.


Assuntos
Antioxidantes , Peptídeos , Antioxidantes/química , Peptídeos/química , Sequência de Aminoácidos , Alimentos , Relação Estrutura-Atividade
15.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552619

RESUMO

This study investigated the efficacy of roasting pre-treatment by air frying to enhance the extraction and recovery of the predominant sinapic acid derivatives (SADs) from roasted canola meal and the antioxidant potential of the methanolic extracts. Canola meal was obtained by air frying canola seed at 160, 170, 180 or 190 °C for 5, 10, 15 or 20 min. Oil was extracted using the Soxhlet method, and the de-oiled meal fraction was air-dried. Phenolic compounds were isolated using ultrasound-assisted extraction with 70% (v/v) methanol and then quantified by high-performance liquid chromatography-diode array detection. The antioxidant potential of the defatted meal methanolic extracts was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and metal ion-chelating activity (MIC) assays. The highest total phenolic content of 3.15 mg gallic acid equivalent/g dry weight was recorded in the defatted meal extract from seeds pre-treated with air frying at 190 °C for 15 min. Sinapine, sinapic acid and an unknown compound at a retention time (RT) of 26.6 min were the major sinapates identified in the defatted meal with the highest concentrations of 7572 ± 479.2 µg/g DW, 727 ± 43.45 µg/g DW and 1763 ± 73.5 µg/g DW, respectively, obtained at 160 °C for 5 min. Canolol (151.35 ± 7.65 µg/g DW) was detected after air frying at a temperature of 170 °C for 20 min. The FRAP and MIC correlated positively (r = 0.85) and generally decreased with increased air frying temperature-time conditions. The highest FRAP and MIC values of 0.53 mM and 80% were obtained at 160 °C for 5 and 20 min, respectively. The outcome of this study will contribute new knowledge that could improve the value addition and by-product utilization of canola seeds.

16.
Front Nutr ; 9: 1021893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337665

RESUMO

Compounds with structural similarities to the neurotransmitter (acetylcholine) are mostly used to inhibit the activity of acetylcholinesterase (AChE) in Alzheimer's disease (AD) therapy. However, the existing drugs only alleviate symptoms of moderate to mild conditions and come with side effects; hence, the search is still on for potent and safer options. In this study, High performance liquid chromatography (HPLC) fractionations of AChE-inhibitory pea protein hydrolysates obtained from alcalase, flavourzyme and pepsin digestions were carried out followed by sequence identification of the most active fractions using mass spectrometry. Subsequently, 20 novel peptide sequences identified from the active fractions were synthesized and five peptides, QSQS, LQHNA, SQSRS, ETRSQ, PQDER (IC50 = 1.53 - 1.61 µg/mL) were selected and analyzed for ability to change AChE protein conformation (fluorescence emission and circular dichroism), kinetics of enzyme inhibition, and enzyme-ligand binding configurations using molecular docking. The kinetics studies revealed different inhibition modes by the peptides with relatively low (<0.02 mM and <0.1 mM) inhibition constant and Michaelis constant, respectively, while maximum velocity was reduced. Conformational changes were confirmed by losses in fluorescence intensity and reduced α-helix content of AChE after interactions with different peptides. Molecular docking revealed binding of the peptides to both the catalytic anionic site and the peripheral anionic site. The five analyzed peptides all contained glutamine (Q) but sequences with Q in the penultimate N-terminal position (LQHNA, SQSRS, and PQDER) had stronger binding affinity. Results from the different analysis in this study confirm that the peptides obtained from enzymatic digestion of pea protein possess the potential to be used as novel AChE-inhibitory agents in AD management.

17.
J Food Biochem ; 46(12): e14485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250929

RESUMO

Pigeon pea protein was sequentially digested with pepsin followed by pancreatin and the hydrolysate separated into 18 fractions using reversed-phase high-performance liquid chromatography. Fractions were analyzed for in vitro antioxidant properties (radical scavenging, metal chelation, and ferric iron reducing ability) in addition to inhibition of renin and angiotensin-converting enzyme (ACE). The most active fractions were analyzed by mass spectroscopy followed by identification of 10 peptide sequences (7 pentapeptides and 3 hexapeptides). All the peptides showed a wide range of multifunctional activity by scavenging hydroxyl (31.9-66.8%) and superoxide (25.6-100.0%) radicals in addition to ACE inhibition (7.4-100%) with significant (p < .05) differences between the peptides. AGVTVS, TKDIG, TSRLG, GRIST, and SGEKI were the most active; however, AGVTVS had the highest hydrophobic residue and exhibited the strongest activity against ACE, renin as well as superoxide and hydroxyl radicals. PRACTICAL APPLICATIONS: There is an increasing attraction of researchers to food peptides especially from legume proteins. Enzymatic digestion as well as high performance liquid chromatography (HPLC) purification has become an important process used to separate peptides with significant biological activities and health-promoting effects. There is useful information regarding the bioactive and functional (in vitro antioxidant, antidiabetic, in vitro/in vivo antihypertensive) properties of hydrolyzed and ultra-filtered pigeon pea fractions but scant research output still exists for purified peptides from pigeon pea establishing their therapeutic potential. The present study aimed to separate peptide fractions from pigeon pea hydrolysate and identify available amino acid sequences from the parent protein. Therefore, peptide sequences generated from the most bioactive fractions showed prospects for the expanded industrial utilization of pigeon pea. Further promoting its application as functional ingredient or additive for alleviating angiotensin-converting enzyme-related diseases.


Assuntos
Cajanus , Rubiaceae , Antioxidantes/química , Inibidores da Enzima Conversora de Angiotensina/química , Renina , Cajanus/química , Superóxidos/metabolismo , Peptídeos/química , Angiotensinas/metabolismo , Rubiaceae/metabolismo
18.
J Food Biochem ; 46(12): e14464, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190151

RESUMO

The objective of this study was to determine the in vitro activities such as antioxidant and inhibitions of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase of sacha inchi protein hydrolysate (SPH) and its membrane ultrafiltration peptide fractions. SPH was prepared after hydrolysis of sacha inchi protein using papain followed by separation into peptide fractions (F1: <1 kDa, F2: 1-3 kDa, F3: 3-5 kDa, and F4: 5-10 kDa) via ultrafiltration membranes. SPH and the peptide fractions were tested for multifunctional properties, specifically functional ability as antioxidants and enzyme inhibitors. Surface hydrophobicity was an important contributing factor to the activity of antioxidative peptides. The DPPH inhibitory activity of F4 was significantly higher (p < .05) than activities of the SPH and other fractions. The smaller peptides with <1 kDa size (F1) showed the most potent (p < .05) antioxidant properties based on the stronger scavenging of ABTS, DPPH, and superoxide radicals in addition to better attenuation of linoleic acid peroxidation. Moreover, the F1 was also the strongest inhibitor of angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase based on the lower IC50 values. It was concluded that the smaller size of the F1 peptides was the main determinant of its strong antioxidant and enzyme inhibition potency, which could be taken as an advantage to formulate functional foods and nutraceuticals with potential activities in ameliorating some of the chronic human diseases. PRACTICAL APPLICATIONS: The results of present study indicate that SPH and its ultrafiltration fractions are potential sources of antihypertensive, antidiabetic, inhibition of POP, reduced cholesterol, and strong antioxidant peptides. The strong angiotensin converting enzyme, dipeptidyl peptidase-IV, prolyl oligopeptidase inhibition, and 3-hydroxy-3-methyl-glutaryl-coenzyme inhibitory efficiency of the F1 peptides (MW < 1 kDa) suggest potential utility as an antihypertensive, antidiabetic agent, reduce cholesterol and brain plasticity and memory formation because the small peptide size could enhance absorption from the gastrointestinal tract. Overall, results from this study indicate that SPH, especially the F1 peptides may have applications as ingredients for the formulation of functional foods and nutraceuticals.


Assuntos
Anti-Hipertensivos , Antioxidantes , Anti-Hipertensivos/química , Antioxidantes/química , Hipoglicemiantes/farmacologia , Oxirredutases , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A , Prolil Oligopeptidases , Hidrolisados de Proteína/química
19.
Nutrients ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893855

RESUMO

Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.


Assuntos
Proteínas do Leite , Leite , Animais , Fermentação , Humanos , Hidrólise , Leite/química , Proteínas do Leite/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico
20.
Chemosphere ; 307(Pt 1): 135650, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35835242

RESUMO

By-products of the meat processing industry which are often discarded as waste are excellent protein substrates for producing bioactive peptides through enzymatic hydrolysis. These peptides have tremendous potential for the development of functional food products but there is scanty information about the regulations on bioactive peptides or products in various parts of the world. This review focuses on the diverse bioactive peptides identified from different meat and meat by-products, their bioactivity and challenges associated in their production as well as factors limiting their effective commercialization. Furthermore, this report provides additional information on the possible toxic peptides formed during production of the bioactive peptides, which enables delineation of associated safety and risk. The regulatory framework in place for bioactive peptide-based foods in different jurisdictions and the future research directions are also discussed. Uniform quality, high cost, poor sensory acceptance, lack of toxicological studies and clinical evidence, paltry stability, and lack of bioavailability data are some of the key challenges hindering commercial advancement of bioactive peptide-based functional foods. Absorption, distribution, metabolism and excretion (ADME) studies in rodents, in vitro genotoxicity, and immunogenicity data could be considered as absolute pre-requisites to ensure safety of bioactive peptides. In the absence of ADME and genotoxicity data, long term usage to evaluate safety is highly warranted. Differences in legislations among countries pose challenge in the international trade of bioactive peptides-based functional foods. Harmonization of regulations could be a way out and hence further research in this area is encouraged.


Assuntos
Comércio , Internacionalidade , Alimento Funcional , Carne/análise , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA