Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(7): e17394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988095

RESUMO

Water-logged peatlands store tremendous amounts of soil carbon (C) globally, accumulating C over millennia. As peatlands become disturbed by human activity, these long-term C stores are getting destabilized and ultimately released as greenhouse gases that may exacerbate climate change. Oxidation of the dissolved organic carbon (DOC) mobilized from disturbed soils to streams and canals may be one avenue for the transfer of previously stored, millennia-aged C to the atmosphere. However, it remains unknown whether aged peat-derived DOC undergoes oxidation to carbon dioxide (CO2) following disturbance. Here, we use a new approach to measure the radiocarbon content of CO2 produced from the oxidation of DOC in canals overlying peatland soils that have undergone widespread disturbance in Indonesia. This work shows for the first time that aged DOC mobilized from drained and burned peatland soils is susceptible to oxidation by both microbial respiration and photomineralization over aquatic travel times for DOC. The bulk radiocarbon age of CO2 produced during canal oxidation ranged from modern to ~1300 years before present. These ages for CO2 were most strongly influenced by canal water depth, which was proportional to the water table level where DOC is mobilized from disturbed soils to canals. Canal microbes preferentially respired older or younger organic C pools to CO2, and this may have been facilitated by the use of a small particulate organic C pool over the dissolved pool. Given that high densities of canals are generally associated with lower water tables and higher fire risk, our findings suggest that peatland areas with high canal density may be a hotspot for the loss of aged C on the landscape. Taken together, the results of this study show how and why aquatic processing of organic C on the landscape can enhance the transfer of long-term peat C stores to the atmosphere following disturbance.


Assuntos
Dióxido de Carbono , Carbono , Solo , Solo/química , Dióxido de Carbono/análise , Carbono/análise , Indonésia , Oxirredução
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624181

RESUMO

Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected insitu. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.


Assuntos
Bactérias , Carbono , Processos Heterotróficos , Ferro , Água do Mar , Ferro/metabolismo , Carbono/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Água do Mar/microbiologia , California , Microbiota
3.
Commun Biol ; 7(1): 160, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351328

RESUMO

Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Temperatura Alta , Água
4.
ACS Environ Au ; 3(5): 319-335, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743953

RESUMO

In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship's underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.

5.
Metabolites ; 12(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36557313

RESUMO

Recent developments in molecular networking have expanded our ability to characterize the metabolome of diverse samples that contain a significant proportion of ion features with no mass spectral match to known compounds. Manual and tool-assisted natural annotation propagation is readily used to classify molecular networks; however, currently no annotation propagation tools leverage consensus confidence strategies enabled by hierarchical chemical ontologies or enable the use of new in silico tools without significant modification. Herein we present ConCISE (Consensus Classifications of In Silico Elucidations) which is the first tool to fuse molecular networking, spectral library matching and in silico class predictions to establish accurate putative classifications for entire subnetworks. By limiting annotation propagation to only structural classes which are identical for the majority of ion features within a subnetwork, ConCISE maintains a true positive rate greater than 95% across all levels of the ChemOnt hierarchical ontology used by the ClassyFire annotation software (superclass, class, subclass). The ConCISE framework expanded the proportion of reliable and consistent ion feature annotation up to 76%, allowing for improved assessment of the chemo-diversity of dissolved organic matter pools from three complex marine metabolomics datasets comprising dominant reef primary producers, five species of the diatom genus Pseudo-nitzchia, and stromatolite sediment samples.

6.
Environ Microbiol ; 24(11): 5408-5424, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36222155

RESUMO

The exchange of metabolites mediates algal and bacterial interactions that maintain ecosystem function. Yet, while thousands of metabolites are produced, only a few molecules have been identified in these associations. Using the ubiquitous microalgae Pseudo-nitzschia sp., as a model, we employed an untargeted metabolomics strategy to assign structural characteristics to the metabolites that distinguished specific diatom-microbiome associations. We cultured five species of Pseudo-nitzschia, including two species that produced the toxin domoic acid, and examined their microbiomes and metabolomes. A total of 4826 molecular features were detected by tandem mass spectrometry. Only 229 of these could be annotated using available mass spectral libraries, but by applying new in silico annotation tools, characterization was expanded to 2710 features. The metabolomes of the Pseudo-nitzschia-microbiome associations were distinct and distinguished by structurally diverse nitrogen compounds, ranging from simple amines and amides to cyclic compounds such as imidazoles, pyrrolidines and lactams. By illuminating the dark metabolomes, this study expands our capacity to discover new chemical targets that facilitate microbial partnerships and uncovers the chemical diversity that underpins algae-bacteria interactions.


Assuntos
Diatomáceas , Microbiota , Diatomáceas/metabolismo , Espectrometria de Massas em Tandem , Metaboloma
7.
Proc Natl Acad Sci U S A ; 119(41): e2209152119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201540

RESUMO

Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically "sulfurized" organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to -10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOMSPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOMSPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOMSPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOSSPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.


Assuntos
Matéria Orgânica Dissolvida , Enxofre , Carbono , Nitrogênio/análise , Fósforo , Fitoplâncton , Sulfatos/análise , Sulfetos , Isótopos de Enxofre , Água
8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101918

RESUMO

Metabolites exuded by primary producers comprise a significant fraction of marine dissolved organic matter, a poorly characterized, heterogenous mixture that dictates microbial metabolism and biogeochemical cycling. We present a foundational untargeted molecular analysis of exudates released by coral reef primary producers using liquid chromatography-tandem mass spectrometry to examine compounds produced by two coral species and three types of algae (macroalgae, turfing microalgae, and crustose coralline algae [CCA]) from Mo'orea, French Polynesia. Of 10,568 distinct ion features recovered from reef and mesocosm waters, 1,667 were exuded by producers; the majority (86%) were organism specific, reflecting a clear divide between coral and algal exometabolomes. These data allowed us to examine two tenets of coral reef ecology at the molecular level. First, stoichiometric analyses show a significantly reduced nominal carbon oxidation state of algal exometabolites than coral exometabolites, illustrating one ecological mechanism by which algal phase shifts engender fundamental changes in the biogeochemistry of reef biomes. Second, coral and algal exometabolomes were differentially enriched in organic macronutrients, revealing a mechanism for reef nutrient-recycling. Coral exometabolomes were enriched in diverse sources of nitrogen and phosphorus, including tyrosine derivatives, oleoyl-taurines, and acyl carnitines. Exometabolites of CCA and turf algae were significantly enriched in nitrogen with distinct signals from polyketide macrolactams and alkaloids, respectively. Macroalgal exometabolomes were dominated by nonnitrogenous compounds, including diverse prenol lipids and steroids. This study provides molecular-level insights into biogeochemical cycling on coral reefs and illustrates how changing benthic cover on reefs influences reef water chemistry with implications for microbial metabolism.


Assuntos
Antozoários/metabolismo , Matéria Orgânica Dissolvida/análise , Alga Marinha/metabolismo , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Carbono/metabolismo , Recifes de Corais , Ecossistema , Biologia Marinha/métodos , Metabolômica/métodos , Nitrogênio/metabolismo , Nutrientes , Fósforo/metabolismo , Polinésia , Água do Mar/química , Alga Marinha/genética , Alga Marinha/crescimento & desenvolvimento
9.
ACS Environ Au ; 2(5): 467-479, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37101454

RESUMO

In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or "nurdles" (∼1680 tons), littering the country's coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.

10.
Nat Chem ; 14(1): 100-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34795435

RESUMO

Although metals are essential for the molecular machineries of life, systematic methods for discovering metal-small molecule complexes from biological samples are limited. Here, we describe a two-step native electrospray ionization-mass spectrometry method, in which post-column pH adjustment and metal infusion are combined with ion identity molecular networking, a rule-based data analysis workflow. This method enabled the identification of metal-binding compounds in complex samples based on defined mass (m/z) offsets of ion species with the same chromatographic profiles. As this native electrospray metabolomics approach is suited to the use of any liquid chromatography-mass spectrometry system to explore the binding of any metal, this method has the potential to become an essential strategy for elucidating metal-binding molecules in biology.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Metais/metabolismo , Sítios de Ligação , Cromatografia Líquida/métodos
11.
Nat Commun ; 12(1): 3832, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158495

RESUMO

Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.


Assuntos
Biologia Computacional/métodos , Íons/metabolismo , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Animais , Internet , Íons/química , Estrutura Molecular , Reprodutibilidade dos Testes , Software
12.
Chemosphere ; 271: 129450, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460888

RESUMO

Urbanization along coastlines alters marine ecosystems including contributing molecules of anthropogenic origin to the coastal dissolved organic matter (DOM) pool. A broad assessment of the nature and extent of anthropogenic impacts on coastal ecosystems is urgently needed to inform regulatory guidelines and ecosystem management. Recently, non-targeted tandem mass spectrometry approaches are gaining momentum for the analysis of global organic matter composition (chemotypes) including a wide array of natural and anthropogenic compounds. In line with these efforts, we developed a non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) workflow that utilizes advanced data analysis approaches such as feature-based molecular networking and repository-scale spectrum searches. This workflow allows the scalable comparison and mapping of seawater chemotypes from large-scale spatial surveys as well as molecular family level annotation of unknown compounds. As a case study, we visualized organic matter chemotype shifts in coastal environments in northern San Diego, USA, after notable rain fall in winter 2017/2018 and highlight potential anthropogenic impacts. The observed seawater chemotype, consisting of 4384 LC-MS/MS features, shifted significantly after a major rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, including pesticides (Imazapyr and Isoxaben), cleaning products (Benzyl-tetradecyl-dimethylammonium) and chemical additives (Hexa (methoxymethyl)melamine) and potential degradation products. By expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we further contextualized their possible origin and show their importance in other ecosystems. The mass spectrometry and data analysis pipelines applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which will contribute to a deliberate assessment of how chemical pollution impacts our oceans.


Assuntos
Ecossistema , Espectrometria de Massas em Tandem , Cromatografia Líquida , Oceanos e Mares , Água do Mar
13.
Front Mar Sci ; 20212021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35004707

RESUMO

The bioavailability of organic matter (OM) to marine heterotrophic bacterioplankton is determined by both the chemical composition of OM and the microbial community composition. In the current study, changes in OM bioavailability were identified at Ocean Station Papa as part of the 2018 Export Processes in the Ocean from Remote Sensing (EXPORTS) field study. Removal rates of carbon (C) in controlled experiments were significantly correlated with the initial composition of total hydrolyzable amino acids, and C removal rates were high when the amino acid degradation index suggested a more labile composition. Carbon remineralization rates averaged 0.19 ± 0.08 µmol C L-1 d-1 over 6-10 days while bacterial growth efficiencies averaged 31 ± 7%. Amino acid composition and tandem mass spectrometry analysis of compound classes also revealed transformations to a more degraded OM composition during experiments. There was a log2-fold increase in the relative abundances of 16S rDNA-resolved bacterioplankton taxa in most experiments by members of the Methylophilaceae family (OM43 genus) and KI89A order. Additionally, when OM was more bioavailable, relative abundances increased by at least threefold for the classes Bacteroidetes (Flavobacteriaceae NS2b genus), Alphaproteobacteria (Rhodobacteraceae Sulfitobacter genus), and Gammaproteobacteria (Alteromonadales and Ectothiorhodospiraceae orders). Our data suggest that a diverse group of bacterioplankton was responsible for removing organic carbon and altering the OM composition to a more degraded state. Elevated community diversity, as inferred from the Shannon-Wiener H index, may have contributed to relatively high growth efficiencies by the bacterioplankton. The data presented here shed light on the interconnections between OM bioavailability and key bacterioplankton taxa for the degradation of marine OM.

14.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668882

RESUMO

Hopanoids, including the extended side chain-containing bacteriohopanepolyols, are bacterial lipids found abundantly in the geological record and across Earth's surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here, we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.


Assuntos
Bactérias/metabolismo , Metabolismo dos Lipídeos/fisiologia , Nitritos/metabolismo , Triterpenos/metabolismo , Bactérias/genética , Oceano Índico , Metagenômica , Oxigênio/metabolismo , Filogenia , Água do Mar/microbiologia
15.
Sci Adv ; 3(9): e1602976, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28959723

RESUMO

The ocean's biota sequester atmospheric carbon dioxide (CO2) in part by producing dissolved organic matter (DOM) that persists in the ocean for millennia. This long-term accumulation of carbon may be facilitated by abiotic and biotic production of chemical structures that resist degradation, consequently contributing disproportionately to refractory DOM. Compounds that are selectively preserved in seawater were identified in solid-phase extracted DOM (PPL-DOM) using comprehensive gas chromatography (GC) coupled to mass spectrometry (MS). These molecules contained cyclic head groups that were linked to isoprenoid tails, and their overall structures closely resembled carotenoid degradation products (CDP). The origin of these compounds in PPL-DOM was further confirmed with an in vitro ß-carotene photooxidation experiment that generated water-soluble CDP with similar structural characteristics. The molecular-level identification linked at least 10% of PPL-DOM carbon, and thus 4% of total DOM carbon, to CDP. Nuclear magnetic resonance spectra of experimental CDP and environmental PPL-DOM overlapped considerably, which indicated that even a greater proportion of PPL-DOM was likely composed of CDP. The CDP-rich DOM fraction was depleted in radiocarbon (14C age > 1500 years), a finding that supports the possible long-term accumulation of CDP in seawater. By linking a specific class of widespread biochemicals to refractory DOM, this work provides a foundation for future studies that aim to examine how persistent DOM forms in the ocean.


Assuntos
Organismos Aquáticos/química , Carotenoides/análise , Compostos Orgânicos/análise , Água do Mar/análise , Água do Mar/química , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Isótopos de Carbono/química , Carotenoides/química , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Oceanos e Mares
16.
Proc Natl Acad Sci U S A ; 114(6): 1252-1257, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115723

RESUMO

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m-2⋅d-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m-2⋅d-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

17.
Environ Sci Technol ; 51(1): 589-595, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983826

RESUMO

Polyhalogenated N-methylbipyrroles of two different structure classes have been detected worldwide in over 100 environmental samples including seawater, bird eggs, fish, dolphin blubber, and in the breast milk of humans that consume seafood. These molecules are concentrated in the fatty tissues in comparable abundance to some of the most important anthropogenic contaminants, such as the halogenated flame-retardants and pesticides. Although the origin of these compounds is still unknown, we present evidence that the production of these materials can involve the direct ozone activated seawater halogenation of N-methylbipyrrole precursors. This observation shows that environmental polyhalogenated bipyrroles can be produced via an abiotic process, and implies that the ozone activated halogenation of a variety of natural and anthropogenic seawater organics may be a significant process occurring in surface ocean waters.


Assuntos
Halogenação , Ozônio , Monitoramento Ambiental , Retardadores de Chama , Água do Mar/química , Poluentes Químicos da Água
18.
Environ Sci Technol ; 50(22): 12129-12137, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27737539

RESUMO

Nontargeted GC×GC-TOF/MS analysis of blubber from 8 common bottlenose dolphins (Tursiops truncatus) inhabiting the Southern California Bight was performed to identify novel, bioaccumulative DDT-related compounds and to determine their abundance relative to the commonly studied DDT-related compounds. We identified 45 bioaccumulative DDT-related compounds of which the majority (80%) is not typically monitored in environmental media. Identified compounds include transformation products, technical mixture impurities such as tris(chlorophenyl)methane (TCPM), the presumed TCPM metabolite tris(chlorophenyl)methanol (TCPMOH), and structurally related compounds with unknown sources, such as hexa- to octachlorinated diphenylethene. To investigate impurities in pesticide mixtures as possible sources of these compounds, we analyzed technical DDT, the primary source of historical contamination in the region, and technical Dicofol, a current use pesticide that contains DDT-related compounds. The technical mixtures contained only 33% of the compounds identified in the blubber, suggesting that transformation products contribute to the majority of the load of DDT-related contaminants in these sentinels of ocean health. Quantitative analysis revealed that TCPM was the second most abundant compound class detected in the blubber, following DDE, and TCPMOH loads were greater than DDT. QSPR estimates verified 4,4',4″-TCPM and 4,4'4,″-TCPMOH are persistent and bioaccumulative.


Assuntos
Golfinho Nariz-de-Garrafa/metabolismo , DDT/metabolismo , Tecido Adiposo/química , Animais , California , Golfinhos , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água
19.
ISME J ; 10(11): 2605-2619, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187795

RESUMO

There are few measurements of nitrification in polar regions, yet geochemical evidence suggests that it is significant, and chemoautotrophy supported by nitrification has been suggested as an important contribution to prokaryotic production during the polar winter. This study reports seasonal ammonia oxidation (AO) rates, gene and transcript abundance in continental shelf waters west of the Antarctic Peninsula, where Thaumarchaeota strongly dominate populations of ammonia-oxidizing organisms. Higher AO rates were observed in the late winter surface mixed layer compared with the same water mass sampled during summer (mean±s.e.: 62±16 versus 13±2.8 nm per day, t-test P<0.0005). AO rates in the circumpolar deep water did not differ between seasons (21±5.7 versus 24±6.6 nm per day; P=0.83), despite 5- to 20-fold greater Thaumarchaeota abundance during summer. AO rates correlated with concentrations of Archaea ammonia monooxygenase (amoA) genes during summer, but not with concentrations of Archaea amoA transcripts, or with ratios of Archaea amoA transcripts per gene, or with concentrations of Betaproteobacterial amoA genes or transcripts. The AO rates we report (<0.1-220 nm per day) are ~10-fold greater than reported previously for Antarctic waters and suggest that inclusion of Antarctic coastal waters in global estimates of oceanic nitrification could increase global rate estimates by ~9%. Chemoautotrophic carbon fixation supported by AO was 3-6% of annualized phytoplankton primary production and production of Thaumarchaeota biomass supported by AO could account for ~9% of the bacterioplankton production measured in winter. Growth rates of thaumarchaeote populations inferred from AO rates averaged 0.3 per day and ranged from 0.01 to 2.1 per day.


Assuntos
Amônia/metabolismo , Archaea/isolamento & purificação , Água do Mar/microbiologia , Regiões Antárticas , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Crescimento Quimioautotrófico , Genes Arqueais , Nitrificação , Oceanos e Mares , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Estações do Ano
20.
Proc Natl Acad Sci U S A ; 113(12): 3143-51, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951682

RESUMO

Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology, and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.


Assuntos
Ciclo do Carbono , Carbono/química , Geologia/métodos , Biologia Marinha/métodos , Água do Mar/análise , Carbono/metabolismo , Ecossistema , Ciência da Informação , Microbiota , Oceanos e Mares , Compostos Orgânicos/análise , Fitoplâncton/metabolismo , Solubilidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA