Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chemosphere ; 346: 140501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303378

RESUMO

Veterinary antibiotics and estrogens are excreted in livestock waste before being applied to agricultural lands as fertilizer, resulting in contamination of soil and adjacent waterways. The objectives of this study were to 1) investigate the degradation kinetics of the VAs sulfamethazine and lincomycin and the estrogens estrone and 17ß-estradiol in soil mesocosms, and 2) assess the effect of the phytochemical DIBOA-Glu, secreted in eastern gamagrass (Tripsacum dactyloides) roots, on antibiotic degradation due to the ability of DIBOA-Glu to facilitate hydrolysis of atrazine in solution assays. Mesocosm soil was a silt loam representing a typical claypan soil in portions of Missouri and the Central United States. Mesocosms (n = 133) were treated with a single target compound (antibiotic concentrations at 125 ng g-1 dw, estrogen concentrations at 1250 ng g-1 dw); a subset of mesocosms treated with antibiotics were also treated with DIBOA-Glu (12,500 ng g-1 dw); all mesocosms were kept at 60% water-filled pore space and incubated at 25 °C in darkness. Randomly chosen mesocosms were destructively sampled in triplicate for up to 96 days. All targeted compounds followed pseudo first-order degradation kinetics in soil. The soil half-life (t0.5) of sulfamethazine ranged between 17.8 and 30.1 d and ranged between 9.37 and 9.90 d for lincomycin. The antibiotics results showed no significant differences in degradation kinetics between treatments with or without DIBOA-Glu. For estrogens, degradation rates of estrone (t0.5 = 4.71-6.08 d) and 17ß-estradiol (t0.5 = 5.59-6.03 d) were very similar; however, results showed that estrone was present as a metabolite in the 17ß-estradiol treated mesocosms and vice-versa within 24 h. The antibiotics results suggest that sulfamethazine has a greater potential to persist in soil than lincomycin. The interconversion of 17ß-estradiol and estrone in soil increased their overall persistence and sustained soil estrogenicity. This study demonstrates the persistence of these compounds in a typical claypan soil representing portions of the Central United States.


Assuntos
Estrona , Poluentes do Solo , Estrona/análise , Antibacterianos , Solo , Sulfametazina , Poluentes do Solo/análise , Estradiol/análise , Estrogênios/metabolismo , Lincomicina
2.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252456

RESUMO

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Compostos Orgânicos/análise
3.
Environ Sci Technol ; 57(14): 5544-5557, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972291

RESUMO

Aqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments using groundwater from the contamination plume and a nearby reference location. The on-site continuous-flow 21-day exposures used male and female fathead minnows, freshwater mussels, polar organic chemical integrative samplers (POCIS), and polyethylene tube samplers (PETS) to evaluate biotic and abiotic uptake. The composition of the PFAS-contaminated groundwater was complex and 9 PFAS were detected in the reference groundwater and 17 PFAS were detected in the contaminated groundwater. The summed PFAS concentrations ranged from 120 to 140 ng L-1 in reference groundwater and 6100 to 15,000 ng L-1 in contaminated groundwater. Biotic concentration factors (CFb) for individual PFAS were species, sex, source, and compound-specific and ranged from 2.9 to 1000 L kg-1 in whole-body male fish exposed to contaminated groundwater for 21 days. The fish and mussel CFb generally increased with increasing fluorocarbon chain length and were greater for sulfonates than for carboxylates. The exception was perfluorohexane sulfonate, which deviated from the linear trend and had a 10-fold difference in CFb between sites, possibly because of biotransformation of precursors such as perfluorohexane sulfonamide. Uptake for most PFAS in male fish was linear over time, whereas female fish had bilinear uptake indicated by an initial increase in tissue concentrations followed by a decrease. Uptake of PFAS was less for mussels (maximum CFb = 200) than for fish, and mussel uptake of most PFAS also was bilinear. Although abiotic concentration factors were greater than CFb, and values for POCIS were greater than for PETS, passive samplers were useful for assessing PFAS that potentially bioconcentrate in fish but are present at concentrations below method quantitation limits in water. Passive samplers also accumulate short-chain PFAS that are not bioconcentrated.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Animais , Masculino , Feminino , Poluentes Químicos da Água/análise , Peixes , Água , Fluorocarbonos/análise , Alcanossulfonatos , Massachusetts , Polietileno
4.
J Environ Qual ; 52(1): 137-148, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36417934

RESUMO

Vegetative buffer strips (VBS) have been demonstrated to effectively reduce loads of sediment, nutrients, and herbicides in surface runoff, but their effectiveness for reducing veterinary antibiotic (VA) loads in runoff has not been well documented. The objective of this study was to determine the effectiveness of VBS vegetation and width on surface runoff loads of the VAs sulfamethazine (SMZ) and lincomycin (LIN). Experimental design of the plots (1.5 × 25 m) was a two-way factorial with four vegetation treatments (tall fescue [Festuca aruninacea Schreb.]; tall fescue with switchgrass [Panicum virgatum L.] hedge; warm-season native grass mix; and continuous fallow control), and four buffer widths (0, 2, 5, and 9 m). Turkey litter spiked with SMZ and LIN was applied to the source area (upper 7 m) of each plot, and runoff was collected at each width. Runoff was generated with a rotating boom simulator. Results showed VA loads in runoff at the 0-m sampler ranged from 3.8 to 5.9% of applied, and overall VA transport in runoff was predominately in the dissolved phase (90% for SMZ and 99% for LIN). Among vegetation treatments, only tall fescue significantly reduced loads of SMZ and LIN compared with the control, with load reductions of ∼30% for both VAs. Estimated field-scale reductions in VA loads showed that source-to-buffer area ratios (SBARs) of 10:1 to 20:1 reduced VA loads by only 7 to 16%. Overall, the grass VBS tested here were less effective at reducing SMZ and LIN loads in surface runoff than has been previously demonstrated for sediment, nutrients, and herbicides.


Assuntos
Herbicidas , Lolium , Panicum , Antibacterianos , Sulfametazina , Herbicidas/análise , Estações do Ano , Lincomicina
5.
Environ Toxicol Chem ; 42(2): 340-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165576

RESUMO

To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Monitoramento Ambiental/métodos , Lagos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Herbicidas/análise
6.
Environ Toxicol Chem ; 40(8): 2165-2182, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003517

RESUMO

Waterborne contaminants were monitored in 69 tributaries of the Laurentian Great Lakes in 2010 and 2014 using semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). A risk-based screening approach was used to prioritize chemicals and chemical mixtures, identify sites at greatest risk for biological impacts, and identify potential hazards to monitor at those sites. Analyses included 185 chemicals (143 detected) including polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, fire retardants, pharmaceuticals, and fragrances. Hazard quotients were calculated by dividing detected concentrations by biological effect concentrations reported in the ECOTOX Knowledgebase (toxicity quotients) or ToxCast database (exposure-activity ratios [EARs]). Mixture effects were estimated by summation of EAR values for chemicals that influence ToxCast assays with common gene targets. Nineteen chemicals-atrazine, N,N-diethyltoluamide, di(2-ethylhexyl)phthalate, dl-menthol, galaxolide, p-tert-octylphenol, 3 organochlorine pesticides, 3 PAHs, 4 pharmaceuticals, and 3 phosphate flame retardants-had toxicity quotients >0.1 or EARs for individual chemicals >10-3 at 10% or more of the sites monitored. An additional 4 chemicals (tributyl phosphate, triethyl citrate, benz[a]anthracene, and benzo[b]fluoranthene) were present in mixtures with EARs >10-3 . To evaluate potential apical effects and biological endpoints to monitor in exposed wildlife, in vitro bioactivity data were compared to adverse outcome pathway gene ontology information. Endpoints and effects associated with endocrine disruption, alterations in xenobiotic metabolism, and potentially neuronal development would be relevant to monitor at the priority sites. The EAR threshold exceedance for many chemical classes was correlated with urban land cover and wastewater effluent influence, whereas herbicides and fire retardants were also correlated to agricultural land cover. Environ Toxicol Chem 2021;40:2165-2182. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Retardadores de Chama , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Retardadores de Chama/análise , Lagos/química , Praguicidas/análise , Praguicidas/toxicidade , Preparações Farmacêuticas , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Toxicol Chem ; 39(7): 1309-1324, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362034

RESUMO

Effects-directed analysis (EDA) is an important tool for identifying unknown bioactive components in a complex mixture. Such an analysis of endocrine-active chemicals (EACs) from water sources has promising regulatory implications but also unique logistical challenges. We propose a conceptual EDA (framework) based on a critical review of EDA literature and concentrations of common EACs in waste and surface waters. Required water volumes for identification of EACs under this EDA framework were estimated based on bioassay performance (in vitro and in vivo bioassays), limits of quantification by mass spectrometry (MS), and EAC water concentrations. Sample volumes for EDA across the EACs showed high variation in the bioassay detectors, with genistein, bisphenol A, and androstenedione requiring very high sample volumes and ethinylestradiol and 17ß-trenbolone requiring low sample volumes. Sample volume based on the MS detector was far less variable across the EACs. The EDA framework equation was rearranged to calculate detector "thresholds," and these thresholds were compared with the literature EAC water concentrations to evaluate the feasibility of the EDA framework. In the majority of instances, feasibility of the EDA was limited by the bioassay, not MS detection. Mixed model analysis showed that the volumes required for a successful EDA were affected by the potentially responsible EAC, detection methods, and the water source type, with detection method having the greatest effect on the EDA of estrogens and androgens. The EDA framework, equation, and model we present provide a valuable tool for designing a successful EDA. Environ Toxicol Chem 2020;39:1309-1324. © 2020 SETAC.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Limite de Detecção , Probabilidade , Poluentes Químicos da Água/análise
8.
Skeletal Radiol ; 48(12): 1947, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31183538

RESUMO

In the results section of the abstract, it states "99.0% (n = 05/96 tendons)" when it should state "99.0% (n = 95/96 tendons)".

9.
Skeletal Radiol ; 48(12): 1941-1946, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31114969

RESUMO

OBJECTIVE: Flexor tendon repair currently requires extensive exposure to locate and repair tendons. Ultrasound (US) has been used to identify lacerated tendon ends with little information on accuracy. This study was designed to measure the accuracy of US to localize tendon ends in zone II flexor tendon lacerations in a cadaveric model. MATERIALS AND METHODS: US was used to locate tendon ends in zone II lacerations of fingers of six cadaveric hands (96 tendon ends) by a musculoskeletal radiologist. The distance of each tendon end relative to the laceration was recorded. Specimens were dissected and tendon position was compared to US position. RESULTS: The radiologist correctly identified full-thickness lacerations of both superficial and deep tendons 99.0% (n = 05/96 tendons) of the time. The average difference between mean US predicted retraction and anatomic confirmed retraction for all digits all tendons was 3.5 mm of underestimation. US correctly identified the position of all tendon stumps to within 10 mm 92.7% (n = 89/96 tendons) of the time and 69.8% (n = 67/96 tendons) of the time to within 5 mm. Error tended to underestimate (61.5%; 59/96 tendons) rather than overestimate retraction (29.2%; 28/96 tendons). CONCLUSIONS: This fresh cadaveric study has demonstrated that with an experienced radiologist, there was 99.0% accuracy identifying a completed tendon tear and locating the tendon ends with US to within 1 cm was 92.7% accurate.


Assuntos
Traumatismos dos Dedos/diagnóstico por imagem , Lacerações/diagnóstico por imagem , Traumatismos dos Tendões/diagnóstico por imagem , Ultrassonografia/métodos , Cadáver , Humanos
10.
Integr Environ Assess Manag ; 15(3): 385-397, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30604916

RESUMO

Historic, current, and future oil and natural gas development can affect water quality in streams flowing through developed areas. We compared small stream drainages in a semiarid landscape with varying amounts of disturbance from oil and natural gas development to examine potential effects of this development on surface water quality. We used physical, chemical, and biological approaches to assess water quality and found several potential avenues of degradation. Surface disturbance likely contributed to elevated suspended sediment concentrations and spill history likely led to elevated stream polycyclic aromatic hydrocarbon concentrations. In combination, these environmental stressors could explain the loss of aquatic macroinvertebrate taxon at sites highly affected by oil and natural gas development. Our results provide insight into advantages and disadvantages of approaches for assessing surface water quality in areas affected by oil and natural gas development. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Indústria de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água , Wyoming
11.
J Aquat Anim Health ; 30(1): 65-80, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29595890

RESUMO

Evidence of disease and mortalities of young of the year (age-0) Smallmouth Bass Micropterus dolomieu has occurred during the late spring and summer in many parts of the Susquehanna River watershed since 2005. To better understand contributing factors, fish collected from multiple areas throughout the watershed as well as out-of-basin reference populations (Allegheny and Delaware River basins; experimental ponds, Kearneysville, West Virginia) were examined grossly and histologically for abnormalities. Tissue contaminant concentrations were determined from whole-body homogenates, and water contaminant concentrations were estimated using time-integrated passive samplers at selected sites. Observed or isolated pathogens included bacteria, predominantly motile Aeromonas spp. and Flavobacterium columnare; largemouth bass virus, and parasites, including trematode metacercariae, cestodes, and the myxozoan Myxobolus inornatus. Although these pathogens were found in age-0 Smallmouth Bass from multiple sites, no one pathogen was consistently associated with mortality. Chemicals detected in tissue included polychlorinated biphenyl (PCB) congeners, organochlorine, and current-use pesticides. Pyraclostrobin, PCB congeners 170 and 187, cis-chlordane and trans-nonachlor were detected in all Susquehanna watershed samples but rarely in samples from the reference site. The findings support the idea that there is no single cause for disease of age-0 Smallmouth Bass; rather the cumulative effects of co-infections and potential immunomodulation by environmental stressors during a sensitive developmental life stage may lead to mortality. Identifying the most important risk factors will be necessary for more in-depth analyses of individual stressors and better management of the habitat and fish populations.


Assuntos
Bass , Doenças dos Peixes/epidemiologia , Poluentes Químicos da Água/análise , Animais , Bactérias/isolamento & purificação , Coinfecção , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/virologia , Parasitos/isolamento & purificação , Pennsylvania/epidemiologia , Fatores de Risco , Rios/química , Estações do Ano , Vírus/isolamento & purificação , Poluentes Químicos da Água/efeitos adversos
12.
Environ Pollut ; 236: 718-733, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454282

RESUMO

The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin.


Assuntos
Monitoramento Ambiental , Lagos/química , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae , Estrona , Compostos Orgânicos/análise , Praguicidas/análise , Rios , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 220(Pt A): 431-440, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27697376

RESUMO

The Midwest United States is an intensely agricultural region where pesticides in streams pose risks to aquatic biota, but temporal variability in pesticide concentrations makes characterization of their exposure to organisms challenging. To compensate for the effects of temporal variability, we deployed polar organic chemical integrative samplers (POCIS) in 100 small streams across the Midwest for about 5 weeks during summer 2013 and analyzed the extracts for 227 pesticide compounds. Analysis of water samples collected weekly for pesticides during POCIS deployment allowed for comparison of POCIS results with periodic water-sampling results. The median number of pesticides detected in POCIS extracts was 62, and 141 compounds were detected at least once, indicating a high level of pesticide contamination of streams in the region. Sixty-five of the 141 compounds detected were pesticide degradates. Mean water concentrations estimated using published POCIS sampling rates strongly correlated with means of weekly water samples collected concurrently, however, the POCIS-estimated concentrations generally were lower than the measured water concentrations. Summed herbicide concentrations (units of ng/POCIS) were greater at agricultural sites than at urban sites but summed concentrations of insecticides and fungicides were greater at urban sites. Consistent with these differences, summed concentrations of herbicides correlate to percent cultivated crops in the watersheds and summed concentrations of insecticides and fungicides correlate to percent urban land use. With the exception of malathion concentrations at nine sites, POCIS-estimated water concentrations of pesticides were lower than aquatic-life benchmarks. The POCIS provide an alternative approach to traditional water sampling for characterizing chronic exposure to pesticides in streams across the Midwest region.


Assuntos
Monitoramento Ambiental/métodos , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Misturas Complexas/análise , Monitoramento Ambiental/instrumentação , Fungicidas Industriais/análise , Herbicidas/análise , Inseticidas/análise , Meio-Oeste dos Estados Unidos , Compostos Orgânicos/análise , Imagens de Satélites , Estações do Ano
14.
PLoS One ; 11(6): e0158175, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348521

RESUMO

Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.


Assuntos
Monitoramento Ambiental , Rios , Salmonidae , Poluentes Químicos da Água , Animais , Geografia , Oregon , Praguicidas/análise , Dinâmica Populacional , Medição de Risco , Rios/química , Análise Espaço-Temporal
15.
Environ Sci Technol ; 50(11): 5991-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129041

RESUMO

Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.


Assuntos
Cyprinidae , Progestinas/farmacologia , Animais , Anticoncepcionais , Feminino , Masculino , Reprodução/efeitos dos fármacos , Comportamento Sexual Animal , Poluentes Químicos da Água/farmacologia
16.
Mar Pollut Bull ; 101(1): 193-199, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26581812

RESUMO

Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r(2)=0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.


Assuntos
Poluentes Químicos da Água/análise , Benzofenonas/análise , Cânfora/análogos & derivados , Cânfora/análise , Parques Recreativos , Raios Ultravioleta , Ilhas Virgens Americanas
17.
Anal Bioanal Chem ; 407(21): 6481-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077747

RESUMO

The emphasis of this research project was to develop and optimize a solid-phase extraction method and high-performance liquid chromatography-electrospray ionization-mass spectrometry method, such that a linkage between the detection of endocrine-active pharmaceuticals (EAPs) in the aquatic environment and subsequent effects on fish populations could eventually be studied. Four EAPs were studied: tamoxifen (TAM), exemestane (EXE), letrozole (LET), anastrozole (ANA); and three TAM metabolites: 4-hydroxytamoxifen, e/z endoxifen, and n-desmethyl tamoxifen. In aqueous matrices, the use of isotopically labeled standards for the EAPs allowed for the generation of good recoveries, greater than 80 %, and low relative standard deviations (% RSDs) (3 to 27 %). TAM metabolites had lower recoveries in the spiked water matrices: 35 to 93 % in waste/source water compared to 58 to 110 % in DI water. The precision in DI water was acceptable ranging from 8 to 38 % RSD. However, the precision in real environmental wastewaters could be poor, ranging from 15 to 120 % RSD, dependent upon unique matrix effects. In plasma, the overall recoveries of the EAPs were acceptable: 88 to 110 %, with %RSDs of 6 to 18 % (Table 3). The spiked recoveries of the TAM metabolites from plasma were good, ranging from 77 to 120 %, with %RSDs ranging from 27 to 32 %. Two of the TAM metabolites, 4-hydroxytamoxifen and n-desmethyl tamoxifen, were confirmed in most of the environmental aqueous samples. The discovery of TAM metabolites demonstrates that the source of the TAM metabolites, TAM, is constant, introducing a pseudo-persistence of this chemical into the environment.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Líquida , Peixes , Limite de Detecção , Espectrometria de Massas em Tandem
18.
Sci Total Environ ; 524-525: 384-93, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25917777

RESUMO

Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.


Assuntos
Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Monitoramento Ambiental , Fenóis/análise , Poluentes Químicos da Água/análise , Atmosfera/química , Missouri , Águas Residuárias/química
19.
Sci Total Environ ; 473-474: 731-41, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24419241

RESUMO

A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.


Assuntos
Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Rios/química
20.
Mar Pollut Bull ; 81(2): 334-9, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23886247

RESUMO

To expand the utility of the Mussel Watch Program, local, regional and state agencies in California partnered with NOAA to design a pilot study that targeted contaminants of emerging concern (CECs). Native mussels (Mytilus spp.) from 68 stations, stratified by land use and discharge scenario, were collected in 2009-10 and analyzed for 167 individual pharmaceuticals, industrial and commercial chemicals and current use pesticides. Passive sampling devices (PSDs) and caged Mytilus were co-deployed to expand the list of CECs, and to assess the ability of PSDs to mimic bioaccumulation by Mytilus. A performance-based quality assurance/quality control (QA/QC) approach was developed to ensure a high degree of data quality, consistency and comparability. Data management and analysis were streamlined and standardized using automated software tools. This pioneering study will help shape future monitoring efforts in California's coastal ecosystems, while serving as a model for monitoring CECs within the region and across the nation.


Assuntos
Monitoramento Ambiental , Mytilus/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos , Animais , California , Ecossistema , Política Ambiental , Praguicidas/metabolismo , Projetos Piloto , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA