RESUMO
BACKGROUND: Fragile X-associated primary ovarian insufficiency (FXPOI), characterized by amenorrhea before age 40 years, occurs in 20% of female FMR1 premutation carriers. Presently, there are no molecular or biomarkers that can help predicting which FMR1 premutation women will develop FXPOI. We previously demonstrated that high FMR4 levels can discriminate between FMR1 premutation carriers with and without FXPOI. In the present study the relationship between the expression levels of FMR4 and the ovarian reserve markers was assessed in female FMR1 premutation carriers under age of 35 years. METHODS: We examined the association between FMR4 transcript levels and the measures of total antral follicle count (AFC) and serum anti-müllerian hormone (AMH) levels as markers of ovarian follicle reserve. RESULTS: Results revealed a negative association between FMR4 levels and AMH (r = 0.45) and AFC (r = 0.64). Statistically significant higher FMR4 transcript levels were found among those FMR1 premutation women with both, low AFCs and AMH levels. CONCLUSIONS: These findings reinforce previous studies supporting the association between high levels of FMR4 and the risk of developing FXPOI in FMR1 premutation carriers.
Assuntos
Hormônio Antimülleriano , Biomarcadores , Proteína do X Frágil da Deficiência Intelectual , Reserva Ovariana , Insuficiência Ovariana Primária , RNA Longo não Codificante , Adulto , Feminino , Humanos , Adulto Jovem , Hormônio Antimülleriano/sangue , Biomarcadores/sangue , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/sangue , Heterozigoto , Mutação , Folículo Ovariano/metabolismo , Reserva Ovariana/genética , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/sangueRESUMO
At 16 + 6-weeks a fetal scan performed in the second pregnancy of a 42 y.o. woman identified a right multicystic dysplastic kidney, left renal agenesis, absent urinary bladder, myocardial hypertrophy, increased nuchal fold, a single umbilical artery, and oligohydramnios. Trio exome sequencing analysis detected a novel pathogenic NONO variant. Postmortem examination after the termination of pregnancy confirmed the ultrasound findings and also revealed pulmonary hypoplasia, retrognathia and low-set ears. The variant was a novel de novo hemizygous pathogenic loss-of-function variant in NONO [NM_007363.5], associated with a rare X-linked recessive neurodevelopmental disorder, named intellectual developmental disorder, X-linked syndromic 34 (OMIM#300967). The postnatal characteristic features of this disorder include intellectual disability, developmental delay, macrocephaly, structural abnormalities involving the corpus callosum and/or cerebellum, left ventricular noncompaction and other congenital heart defects. In the prenatal setting, the phenotype has been poorly described, with all described cases presenting with heart defects. This case highlights the need of further clinical delineation to include renal abnormalities in the prenatal phenotype spectrum.
Assuntos
Cardiopatias Congênitas , Deficiência Intelectual , Nefropatias , Anormalidades Urogenitais , Gravidez , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/anormalidades , Feto/anormalidades , Nefropatias/diagnóstico por imagem , Nefropatias/genética , Deficiência Intelectual/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genéticaRESUMO
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.
Assuntos
Síndrome do Cromossomo X Frágil , Tremor , Adulto , Humanos , Tremor/genética , Tremor/metabolismo , Tremor/patologia , Ubiquitina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Ataxia/patologia , Autofagia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismoRESUMO
BACKGROUND & AIMS: Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS: Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS: Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS: We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Assuntos
Fibroblastos , Fígado , Humanos , Camundongos , Animais , Fibroblastos/patologia , Fígado/patologia , Cirrose Hepática/patologia , Mitocôndrias/patologia , Fatores de Transcrição/genéticaRESUMO
Neurological disorders (ND) are diseases that affect the brain and the central and autonomic nervous systems, such as neurodevelopmental disorders, cerebellar ataxias, Parkinson's disease, or epilepsies. Nowadays, recommendations of the American College of Medical Genetics and Genomics strongly recommend applying next generation sequencing (NGS) as a first-line test in patients with these disorders. Whole exome sequencing (WES) is widely regarded as the current technology of choice for diagnosing monogenic ND. The introduction of NGS allows for rapid and inexpensive large-scale genomic analysis and has led to enormous progress in deciphering monogenic forms of various genetic diseases. The simultaneous analysis of several potentially mutated genes improves the diagnostic process, making it faster and more efficient. The main aim of this report is to discuss the impact and advantages of the implementation of WES into the clinical diagnosis and management of ND. Therefore, we have performed a retrospective evaluation of WES application in 209 cases referred to the Department of Biochemistry and Molecular Genetics of the Hospital Clinic of Barcelona for WES sequencing derived from neurologists or clinical geneticists. In addition, we have further discussed some important facts regarding classification criteria for pathogenicity of rare variants, variants of unknown significance, deleterious variants, different clinical phenotypes, or frequency of actionable secondary findings. Different studies have shown that WES implementation establish diagnostic rate around 32% in ND and the continuous molecular diagnosis is essential to solve the remaining cases.
Assuntos
Epilepsia , Exoma , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Exoma/genética , Fenótipo , Epilepsia/diagnóstico , Epilepsia/genéticaRESUMO
BACKGROUND: KBG syndrome is a highly variable neurodevelopmental disorder and clinical diagnostic criteria have changed as new patients have been reported. Both loss-of-function sequence variants and large deletions (copy number variations, CNVs) involving ANKRD11 cause KBG syndrome, but no genotype-phenotype correlation has been reported. METHODS: 67 patients with KBG syndrome were assessed using a custom phenotypical questionnaire. Manifestations present in >50% of the patients and a 'phenotypical score' were used to perform a genotype-phenotype correlation in 340 patients from our cohort and the literature. RESULTS: Neurodevelopmental delay, macrodontia, triangular face, characteristic ears, nose and eyebrows were the most prevalentf (eatures. 82.8% of the patients had at least one of seven main comorbidities: hearing loss and/or otitis media, visual problems, cryptorchidism, cardiopathy, feeding difficulties and/or seizures. Associations found included a higher phenotypical score in patients with sequence variants compared with CNVs and a higher frequency of triangular face (71.1% vs 42.5% in CNVs). Short stature was more frequent in patients with exon 9 variants (62.5% inside vs 27.8% outside exon 9), and the prevalence of intellectual disability/attention deficit hyperactivity disorder/autism spectrum disorder was lower in patients with the c.1903_1907del variant (70.4% vs 89.4% other variants). Presence of macrodontia and comorbidities were associated with larger deletion sizes and hand anomalies with smaller deletions. CONCLUSION: We present a detailed phenotypical description of KBG syndrome in the largest series reported to date of 67 patients, provide evidence of a genotype-phenotype correlation between some KBG features and specific ANKRD11 variants in 340 patients, and propose updated clinical diagnostic criteria based on our findings.
Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Masculino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Fácies , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Proteínas Repressoras/genética , Deleção Cromossômica , Fenótipo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cause of end-stage kidney disease. Currently, tolvaptan is the only treatment that has proven to delay disease progression. The most notable side effect of this therapy is drug-induced liver injury; however, recently, there have been two reports of creatine kinase (CK) elevation in ADPKD patients on tolvaptan treatment. We set out to monitor and determine the actual incidence of CK elevation and evaluate its potential association with other clinical factors. METHODS: This is an observational retrospective multicenter study performed in rapidly progressive ADPKD patients on tolvaptan treatment from Barcelona, Spain. Laboratory tests, demographics, treatment dose, and reported symptoms were collected from October 2018 to March 2021. RESULTS: Ninety-five patients initiated tolvaptan treatment during follow-up. The medication had to be discontinued in 31 (32.6%) patients, primarily due to aquaretic effects (12.6%), elevated liver enzymes (8.4%), and symptomatic or persistently elevated CK levels (3.2%). Moreover, a total of 27 (28.4%) patients had elevated CK levels, with most of them being either transient (12.6%), mild and asymptomatic (4.2%), or resolved after dose reduction (3.2%) or temporary discontinuation (2.1%). CONCLUSION: We pre-sent the largest cohort that has monitored CK levels in a real-life setting, finding them elevated in 28.4% of patients. More research and monitoring will help us understand the clinical implications and the pathophysiological mechanism of CK elevation in this population.
Assuntos
Falência Renal Crônica , Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/uso terapêutico , Tolvaptan/efeitos adversos , Rim Policístico Autossômico Dominante/complicações , Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Falência Renal Crônica/complicações , Progressão da Doença , RimRESUMO
A psychiatric disorder is a mental illness involving significant disturbances in thinking, emotional regulation or behavior [...].
Assuntos
Transtornos Mentais , Neurobiologia , Humanos , Transtornos Mentais/genéticaRESUMO
Fragile X syndrome (FXS) is caused by an abnormal expansion of the number of trinucleotide CGG repeats located in the 5' UTR in the first exon of the FMR1 gene. Size and methylation mosaicisms are commonly observed in FXS patients. Both types of mosaicisms might be associated with less severe phenotypes depending on the number of cells expressing FMRP. Although this dynamic mutation is the main underlying cause of FXS, other mechanisms, including point mutations or deletions, can lead to FXS. Several reports have demonstrated that de novo deletions including the entire or a portion of the FMR1 gene end up with the absence of FMRP and, thus, can lead to the typical clinical features of FXS. However, very little is known about the clinical manifestations associated with FMR1 gene deletions in mosaicism. Here, we report an FXS case caused by an entire hemizygous deletion of the FMR1 gene caused by maternal mosaicism. This manuscript reports this case and a literature review of the clinical manifestations presented by carriers of FMR1 gene deletions in mosaicism.
Assuntos
Síndrome do Cromossomo X Frágil , Regiões 5' não Traduzidas , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Mosaicismo , Expansão das Repetições de TrinucleotídeosRESUMO
Lethal congenital contracture syndrome 11 (LCCS11) is caused by homozygous or compound heterozygous variants in the GLDN gene on chromosome 15q21. GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report a fetus with ultrasound alterations detected at 28 weeks of gestation. The fetus exhibited hydrops, short long bones, fixed limb joints, absent fetal movements, and polyhydramnios. The pregnancy was terminated and postmortem studies confirmed the prenatal findings: distal arthrogryposis, fetal growth restriction, pulmonary hypoplasia, and retrognathia. The fetus had a normal chromosomal microarray analysis. Exome sequencing revealed two novel compound heterozygous variants in the GLDN associated with LCCS11. This manuscript reports this case and performs a literature review of all published LCCS11 cases.
RESUMO
The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.
RESUMO
Female FMR1 (Fragile X mental retardation 1) premutation carriers are at risk for developing fragile X-associated primary ovarian insufficiency (FXPOI), a condition characterized by amenorrhea before age 40 years. Not all women with a FMR1 premutation suffer from primary ovarian insufficiency and nowadays there are no molecular or other biomarkers that can help predict the occurrence of FXPOI. Long non-coding RNAs (lncRNAs) comprise a group of regulatory transcripts which have versatile molecular functions, making them important regulators in all aspects of gene expression. In recent medical studies, lncRNAs have been described as potential diagnostic biomarkers in many diseases. The present study was designed to determine the expression profile of three lncRNAs derived from the FMR1 locus, FMR4, FMR5 and FMR6, in female FMR1 premutation carriers in order: (i) to determine a possible role in the pathogenesis of FXPOI and (ii) to investigate whether they could serve as a biomarker for the diagnosis of FXPOI. FMR4, FMR5 and FMR6 transcripts levels were evaluated in total RNA extracted from peripheral blood by digital droplet PCR and compared between FMR1 premutation carriers with FXPOI and without FXPOI. The diagnostic value of lncRNAs was evaluated by receiver operating characteristic (ROC) analysis. Results revealed a significant association between FXPOI and high expression levels of FMR4. No association was obtained for FMR5 or FMR6. ROC curve analysis revealed that FMR4 can distinguish FMR1 premutation carrier with FXPOI with a diagnostic power of 0.67. These findings suggest a potential role of FMR4 as a possible biomarker for FXPOI.
RESUMO
In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer's disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.
Assuntos
Doença de Alzheimer , Demência , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Predisposição Genética para Doença , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , NeuroimagemRESUMO
BACKGROUND: Neurodevelopmental disorders (NDDs) are a group of heterogeneous conditions, which include mainly intellectual disability, developmental delay (DD) and autism spectrum disorder (ASD), among others. These diseases are highly heterogeneous and both genetic and environmental factors play an important role in many of them. The introduction of next generation sequencing (NGS) has lead to the detection of genetic variants in several genetic diseases. The main aim of this report is to discuss the impact and advantages of the implementation of NGS in the diagnosis of NDDs. Herein, we report diagnostic yields of applying whole exome sequencing in 87 families affected by NDDs and additional data of whole genome sequencing (WGS) from 12 of these families. RESULTS: The use of NGS technologies allowed identifying the causative gene alteration in approximately 36% (31/87) of the families. Among them, de novo mutation represented the most common cause of genetic alteration found in 48% (15/31) of the patients with diagnostic mutations. The majority of variants were located in known neurodevelopmental disorders genes. Nevertheless, some of the diagnoses were made after the use of GeneMatcher tools which allow the identification of additional patients carrying mutations in THOC2, SETD1B and CHD9 genes. Finally the use of WGS only allowed the identification of disease causing variants in 8% (1/12) of the patients in which previous WES failed to identify a genetic aetiology. CONCLUSION: NGS is more powerful in identifying causative pathogenic variant than conventional algorithms based on chromosomal microarray as first-tier test. Our results reinforce the implementation of NGS as a first-test in genetic diagnosis of NDDs.
Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Sequenciamento do Exoma/métodosRESUMO
Hexanucleotide repeat expansion in C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Loss of C9ORF72 protein function and a toxic gain-of-function directly by the RNA or RAN translation have been proposed as triggering pathological mechanisms, along with the accumulation of TDP-43 protein. In addition, mitochondrial defects have been described to be a major driver of disease initiation. Mitochondrial DNA copy number has been proposed as a useful biomarker of mitochondrial dysfunction. The aim of our study was to determine the presence of mtDNA copy number alterations in C9ALS/FTD patients. Therefore, we assessed mtDNA copy number in postmortem prefrontal cortex from 18 C9ORF72 brain donors and 9 controls using digital droplet PCR. A statistically significant decrease of 50% was obtained when comparing C9ORF72 samples and controls. This decrease was independent of age and sex. The reduction of mtDNA copy number was found to be higher in patients' samples presenting abundant TDP-43 protein inclusions. A growing number of studies demonstrated the influence of mtDNA copy number reduction on neurodegeneration. Our results provide new insights into the role of mitochondrial dysfunction in the pathogenesis of C9ALS/FTD.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Variações do Número de Cópias de DNA/genética , Expansão das Repetições de DNA , DNA Mitocondrial/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Córtex Pré-Frontal/metabolismoRESUMO
Introduction: Fragile X-associated tremor/ataxia syndrome (FXTAS, OMIM# 300623) is a late-onset neurodegenerative disorder with reduced penetrance that appears in adult FMR1 premutation carriers (55-200 CGGs). Clinical symptoms in FXTAS patients usually begin with an action tremor. After that, different findings including ataxia, and more variably, loss of sensation in the distal lower extremities and autonomic dysfunction, may occur, and gradually progress. Cognitive deficits are also observed, and include memory problems and executive function deficits, with a gradual progression to dementia in some individuals. Aquaporin 4 (AQP4) is a commonly distributed water channel in astrocytes of the central nervous system. Changes in AQP4 activity and expression have been implicated in several central nervous system disorders. Previous studies have suggested the associations of AQP4 single nucleotide polymorphisms (SNPs) with brain-water homeostasis, and neurodegeneration disease. To date, this association has not been studied in FXTAS. Methods: To investigate the association of AQP4 SNPs with the risk of presenting FXTAS, a total of seven common AQP4 SNPs were selected and genotyped in 95 FMR1 premutation carriers with FXTAS and in 65 FMR1 premutation carriers without FXTAS. Results: The frequency of AQP4-haplotype was compared between groups, denoting 26 heterozygous individuals and 5 homozygotes as carriers of the minor allele in the FXTAS group and 25 heterozygous and 2 homozygotes in the no-FXTAS group. Statistical analyses showed no significant associations between AQP4 SNPs/haplotypes and development of FXTAS. Discussion: Although AQP4 has been implicated in a wide range of brain disorders, its involvement in FXTAS remains unclear. The identification of novel genetic markers predisposing to FXTAS or modulating disease progression is critical for future research involving predictors and treatments.
RESUMO
FMR1 premutation is defined by 55-200 CGG repeats in the Fragile X Mental Retardation 1 (FMR1) gene. FMR1 premutation carriers are at risk of developing a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. In the last years an increasingly board spectrum of clinical manifestations including psychiatric disorders have been described as occurring at a greater frequency among FMR1 premutation carriers. Herein, we reviewed the neuroimaging findings reported in relation with psychiatric symptomatology in adult FMR1 premutation carriers. A structured electronic literature search was conducted on FMR1 premutation and neuroimaging yielding a total of 3,229 articles examined. Of these, 7 articles were analyzed and are included in this review. The results showed that the main radiological findings among adult FMR1 premutation carriers presenting neuropsychiatric disorders were found on the amygdala and hippocampus, being the functional abnormalities more consistent and the volumetric changes more inconsistent among studies. From a molecular perspective, CGG repeat size, FMR1 mRNA and FMRP levels have been investigated in relation with the neuroimaging findings. Based on the published results, FMRP might play a key role in the pathophysiology of the psychiatric symptoms described among FMR1 premutation carriers. However, additional studies including further probes of brain function and a broader scope of psychiatric symptom measurement are required in order to obtain a comprehensive landscape of the neuropsychiatric phenotype associated with the FMR1 premutation.
RESUMO
Advances in high-throughput technologies and its implementation worldwide have had a considerable impact on the elucidation of the molecular causes underlying neurodevelopmental psychiatric disorders, especially for autism spectrum disorder and intellectual disability (ID). Nevertheless, etiology remains elusive in close to 50% of cases, even in those families with multiple affected individuals, strongly hinting at a genetic cause. Here we present a case report of two siblings affected with severe ID and other comorbidities, who embarked on a genetic testing odyssey until diagnosis was reached by using whole genome sequencing (WGS). WGS identified a maternally inherited novel missense variant (NM_031466.7:c.1037G > A; p.Gly346Glu) and a paternally inherited 90 kb intragenic deletion in TRAPPC9 gene. This report demonstrates the clinical utility of WGS in patients who remain undiagnosed after whole exome sequencing.
Assuntos
Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação de Sentido Incorreto , Sequenciamento Completo do Genoma/métodos , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Herança Materna , Herança Paterna , Linhagem , IrmãosRESUMO
Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and a FMR1 testing as first-tier tests, but there is increasing evidence that support the use of NGS for the diagnosis of NDDs. Specifically in ASD, it has not been extensively evaluated and, thus, we performed and compared the clinical utility of CMA, FMR1 testing, and/or whole exome sequencing (WES) in a cohort of 343 ASD patients. We achieved a global diagnostic rate of 12.8% (44/343), the majority of them being characterised by WES (33/44; 75%) compared to CMA (9/44; 20.4%) or FMR1 testing (2/44; 4.5%). Taking into account the age at which genetic testing was carried out, we identified a causal genetic alteration in 22.5% (37/164) of patients over 5 years old, but only in 3.9% (7/179) of patients under this age. Our data evidence the higher diagnostic power of WES compared to CMA in the study of ASD and support the implementation of WES as a first-tier test for the genetic diagnosis of this disorder, when there is no suspicion of fragile X syndrome.
Assuntos
Transtorno do Espectro Autista/diagnóstico , Sequenciamento do Exoma/métodos , Proteína do X Frágil da Deficiência Intelectual/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adolescente , Adulto , Fatores Etários , Algoritmos , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Cromossomos Humanos/genética , Diagnóstico Precoce , Feminino , Testes Genéticos , Humanos , Lactente , Masculino , Sensibilidade e Especificidade , Adulto JovemRESUMO
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small vessel disease caused predominantly by pathogenic variants in NOTCH3 gene. Neither germline nor somatic mosaicism has been previously published in NOTCH3 gene. CADASIL is inherited in an autosomal dominant manner; only rare cases have been associated with de novo pathogenic variants. Mosaicism is more common than previously thought because mosaic variants often stay unrevealed. An apparently de novo variant might actually be a consequence of a parental mosaicism undetectable with Sanger sequencing, especially in the case of low grade mosaicism. Parental testing by sensitive tools like deep targeted next-generation sequencing (NGS) analysis could detect cases of unrevealed medium or low level mosaicism in patients tested by Sanger sequencing. Here, we report the first patient with mosaic NOTCH3 gene pathogenic variant to our knowledge; the allelic fraction in the leucocyte DNA was low (13%); the pathogenic variant was inhered by his two daughters. The patient was diagnosed by deep targeted NGS analysis after studying his two affected daughters. This report highlights the importance of parental testing by sensitive tools like deep targeted NGS analysis. Detection of mosaicism is of great importance for diagnosis and adequate family genetic counseling.