Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798490

RESUMO

Sialylation, the addition of negatively charged sialic acid sugars to terminal ends of glycans, is upregulated in most cancers. Hypersialylation supports multiple pro-tumor mechanisms such as enhanced migration and invasion, resistance to apoptosis and immune evasion. A current gap in knowledge is the lack of understanding on how the tumor microenvironment regulates cancer cell sialylation. The adipose niche is a main component of most peritoneal cancers' microenvironment. This includes ovarian cancer (OC), which causes most deaths from all gynecologic cancers. In this report, we demonstrate that the adipose microenvironment is a critical regulator of OC cell sialylation. In vitro adipose conditioning led to an increase in both ⍺2,3- and ⍺2,6-linked cell surface sialic acids in both human and mouse models of OC. Adipose-induced sialylation reprogramming was also observed in vivo from intra-peritoneal OC tumors seeded in the adipose-rich omentum. Mechanistically, we observed upregulation of at least three sialyltransferases, ST3GAL1, ST6GAL1 and ST3GALNAC3. Hypersialylated OC cells consistently formed intra-peritoneal tumors in both immune-competent mice and immune-compromised athymic nude mice. In contrast, hyposiaylated OC cells persistently formed tumors only in athymic nude mice demonstrating that sialylation impacts OC tumor formation in an immune dependent manner. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancers.

2.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345216

RESUMO

Ovarian cancer is the deadliest gynecologic malignancy. The omentum plays a key role in providing a supportive microenvironment to metastatic ovarian cancer cells as well as immune modulatory signals that allow tumor tolerance. However, we have limited models that closely mimic the interaction between ovarian cancer cells and adipose-rich tissues. To further understand the cellular and molecular mechanisms by which the omentum provides a pro-tumoral microenvironment, we developed a unique 3D ex vivo model of cancer cell-omentum interaction. Using human omentum, we are able to grow ovarian cancer cells within this adipose-rich microenvironment and monitor the factors responsible for tumor growth and immune regulation. In addition to providing a platform for the study of this adipose-rich tumor microenvironment, the model provides an excellent platform for the development and evaluation of novel therapeutic approaches to target metastatic cancer cells in this niche. The proposed model is easy to generate, inexpensive, and applicable to translational investigations.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Humanos , Feminino , Neoplasias Peritoneais/secundário , Omento , Neoplasias Ovarianas/patologia , Tecido Adiposo/patologia , Metástase Neoplásica/patologia , Microambiente Tumoral
3.
Cancer Immunol Res ; 12(2): 261-274, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38078853

RESUMO

Current immunotherapies have proven effective in strengthening antitumor immune responses, but constant opposing signals from tumor cells and the surrounding microenvironment eventually lead to immune escape. We hypothesized that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system would provide a robust and long-term antitumor effect by creating immunologic memory against tumors. To achieve this, we developed CARG-2020, a genetically modified virus-like vesicle (VLV) that is a self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three immune modulators: (i) the pleiotropic antitumor cytokine IL12, in which the subunits (p35 and p40) are tethered together; (ii) the extracellular domain (ECD) of the protumor IL17RA, which serves as a dominant-negative antagonist; and (iii) a shRNA targeting PD-L1. Using a mouse model of ovarian cancer, we demonstrated the oncolytic effect and immune-modulatory capacities of CARG-2020. By enhancing IL12 and blocking IL17 and PD-L1, CARG-2020 successfully reactivated immune surveillance by promoting M1, instead of M2, macrophage differentiation, inhibiting MDSC expansion and establishing a potent CD8+ T cell-mediated antitumoral response. Furthermore, we demonstrated that this therapeutic approach provided tumor-specific and long-term protection against the establishment of new tumors. Our results provide a rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance antitumor responses and prevent a recurrence.


Assuntos
Memória Imunológica , Neoplasias Ovarianas , Feminino , Humanos , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Ovarianas/terapia , Interleucina-12/genética , Microambiente Tumoral , Linhagem Celular Tumoral
4.
J Ovarian Res ; 16(1): 233, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037081

RESUMO

BACKGROUND: Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. RESULTS: Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. CONCLUSION: In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Complexo Repressor Polycomb 1/genética , Neoplasias Ovarianas/patologia , Transdução de Sinais , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
5.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986971

RESUMO

Background: Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. Results: Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. Conclusion: In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.

6.
Biomarkers ; 28(7): 663-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982229

RESUMO

Background: Ovarian cancer cells are known to express myeloperoxidase (MPO), an oxidant-producing enzyme with a 150 kDa homodimer, consisting of two identical monomers connected by a disulfide bond. Here, we aim to validate monomeric MPO (mMPO) as a biomarker for the early detection of ovarian cancer.Methods: Human ovarian cancer cells, sera from patients at various stages, sera from non-cancer inflammatory gynecological diseases, and healthy volunteers were used. Monomeric and dimeric MPO were measured by ELISA. Receiver operating curves were used to compare the predictive powers of serum dimeric and monomeric MPO to discriminate between samples.Results: The expression of MPO was unique to ovarian cancer cells. Specifically, mMPO was found to be the only form of MPO in all ovarian cancer cell lines. Intriguingly, mMPO was detected in the sera from all patients with ovarian cancer at various stages, but not from healthy individuals. Serum mMPO discriminated between early-stage ovarian cancer, healthy controls, and benign inflammatory gynecologic disorders. In addition, mMPO discriminated between the early and late stages of the disease.Conclusion: This work highlights mMPO as a potential biomarker for early detection of ovarian cancer, which is critically needed.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais , Neoplasias Ovarianas/diagnóstico , Peroxidase/metabolismo
7.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37835529

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) is a biological process where epithelial cells lose their adhesive properties and gain invasive, metastatic, and mesenchymal properties. Maintaining the balance between the epithelial and mesenchymal stage is essential for tissue homeostasis. Many of the genes promoting mesenchymal transformation have been identified; however, our understanding of the genes responsible for maintaining the epithelial phenotype is limited. Our objective was to identify the genes responsible for maintaining the epithelial phenotype and inhibiting EMT. METHODS: RNA seq was performed using an vitro model of EMT. CTGF expression was determined via qPCR and Western blot analysis. The knockout of CTGF was completed using the CTGF sgRNA CRISPR/CAS9. The tumorigenic potential was determined using NCG mice. RESULTS: The knockout of CTGF in epithelial ovarian cancer cells leads to the acquisition of functional characteristics associated with the mesenchymal phenotype such as anoikis resistance, cytoskeleton remodeling, increased cell stiffness, and the acquisition of invasion and tumorigenic capacity. CONCLUSIONS: We identified CTGF is an important regulator of the epithelial phenotype, and its loss is associated with the early cellular modifications required for EMT. We describe a novel role for CTGF, regulating cytoskeleton and the extracellular matrix interactions necessary for the conservation of epithelial structure and function. These findings provide a new window into understanding the early stages of mesenchymal transformation.

8.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808682

RESUMO

Current immunotherapies have proven effective in strengthening anti-tumor immune responses but constant opposing signals from tumor cells and surrounding microenvironment eventually lead to immune escape. We hypothesize that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system will provide a robust and long-term anti-tumor effect by creating immunological memory against the tumor. To achieve this, we developed CARG-2020, a virus-like-vesicle (VLV). It is a genetically modified and self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three transgenes: 1 ) the pleiotropic antitumor cytokine IL-12 in which the subunits (p35 and p40) are tethered together; 2) the extracellular domain (ECD) of the pro- tumor IL-17RA, which can serve as a dominant negative antagonist; and 3) shRNA for PD-L1. Using a mouse model of ovarian cancer, we demonstrate the oncolytic effect and immune modulatory capacities of CARG-2020. By enhancing IL-12 and blocking IL-17 and PD-L1, CARG-2020 successfully reactivates immune surveillance by promoting M1 instead of M2 macrophage differentiation, inhibiting MDSC expansion, and establishing a potent CD8+ T cell mediated anti-tumoral response. Furthermore, we demonstrate that this therapeutic approach provides tumor-specific and long-term protection preventing the establishment of new tumors. Our results provide rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance the anti-tumor response and to prevent recurrence.

9.
Front Immunol ; 14: 1204148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435088

RESUMO

Introduction: Ovarian cancer recurs in most High Grade Serous Ovarian Cancer (HGSOC) patients, including initial responders, after standard of care. To improve patient survival, we need to identify and understand the factors contributing to early or late recurrence and therapeutically target these mechanisms. We hypothesized that in HGSOC, the response to chemotherapy is associated with a specific gene expression signature determined by the tumor microenvironment. In this study, we sought to determine the differences in gene expression and the tumor immune microenvironment between patients who show early recurrence (within 6 months) compared to those who show late recurrence following chemotherapy. Methods: Paired tumor samples were obtained before and after Carboplatin and Taxol chemotherapy from 24 patients with HGSOC. Bioinformatic transcriptomic analysis was performed on the tumor samples to determine the gene expression signature associated with differences in recurrence pattern. Gene Ontology and Pathway analysis was performed using AdvaitaBio's iPathwayGuide software. Tumor immune cell fractions were imputed using CIBERSORTx. Results were compared between late recurrence and early recurrence patients, and between paired pre-chemotherapy and post-chemotherapy samples. Results: There was no statistically significant difference between early recurrence or late recurrence ovarian tumors pre-chemotherapy. However, chemotherapy induced significant immunological changes in tumors from late recurrence patients but had no impact on tumors from early recurrence patients. The key immunological change induced by chemotherapy in late recurrence patients was the reversal of pro-tumor immune signature. Discussion: We report for the first time, the association between immunological modifications in response to chemotherapy and the time of recurrence. Our findings provide novel opportunities to ultimately improve ovarian cancer patient survival.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carboplatina , Paclitaxel/uso terapêutico , Biologia Computacional , Microambiente Tumoral/genética
10.
J Immunol ; 210(12): 1899-1912, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37144865

RESUMO

An efficient immune defense against pathogens requires sufficient basal sensing mechanisms that can deliver prompt responses. Type I IFNs are protective against acute viral infections and respond to viral and bacterial infections, but their efficacy depends on constitutive basal activity that promotes the expression of downstream genes known as IFN-stimulated genes (ISGs). Type I IFNs and ISGs are constitutively produced at low quantities and yet exert profound effects essential for numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Although the canonical response pathway for type I IFNs has been extensively characterized, less is known regarding the transcriptional regulation of constitutive ISG expression. Zika virus (ZIKV) infection is a major risk for human pregnancy complications and fetal development and depends on an appropriate IFN-ß response. However, it is poorly understood how ZIKV, despite an IFN-ß response, causes miscarriages. We have uncovered a mechanism for this function specifically in the context of the early antiviral response. Our results demonstrate that IFN regulatory factor (IRF9) is critical in the early response to ZIKV infection in human trophoblast. This function is contingent on IRF9 binding to Twist1. In this signaling cascade, Twist1 was not only a required partner that promotes IRF9 binding to the IFN-stimulated response element but also an upstream regulator that controls basal levels of IRF9. The absence of Twist1 renders human trophoblast cells susceptible to ZIKV infection.


Assuntos
Anti-Infecciosos , Interferon Tipo I , Infecção por Zika virus , Zika virus , Humanos , Antivirais , Fator Gênico 3 Estimulado por Interferon, Subunidade gama
11.
Cancers (Basel) ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36765641

RESUMO

PURPOSE: Cancer progression, invasiveness, and metastatic potential have been associated with the activation of the cellular development program known as epithelial-to-mesenchymal transition (EMT). This process is known to yield not only mesenchymal cells, but instead an array of cells with different degrees of epithelial and mesenchymal phenotypes with high plasticity, usually referred to as E/M hybrid cells. The characteristics of E/M hybrid cells, their importance in tumor progression, and the key regulators in the tumor microenvironment that support this phenotype are still poorly understood. METHODS: In this study, we established an in vitro model of EMT and characterized the different stages of differentiation, allowing us to identify the main genomic signature associated with the E/M hybrid state. RESULTS: We report that once the cells enter the E/M hybrid state, they acquire stable anoikis resistance, invasive capacity, and tumorigenic potential. We identified the hepatocyte growth factor (HGF)/c-MET pathway as a major driver that pushes cells in the E/M hybrid state. CONCLUSIONS: Herein, we provide a detailed characterization of the signaling pathway(s) promoting and the genes associated with the E/M hybrid state.

12.
Transl Oncol ; 29: 101623, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36641875

RESUMO

Cancer progression requires the acquisition of mechanisms that support proliferative potential and metastatic capacity. MNRR1 (also CHCHD2, PARK22, AAG10) is a bi-organellar protein that in the mitochondria can bind to Bcl-xL to enhance its anti-apoptotic function, or to respiratory chain complex IV (COX IV) to increase mitochondrial respiration. In the nucleus, it can act as a transcription factor and promote the expression of genes involved in mitochondrial biogenesis, migration, and cellular stress response. Given that MNRR1 can regulate both apoptosis and mitochondrial respiration, as well as migration, we hypothesize that it can modulate metastatic spread. Using ovarian cancer models, we show heterogeneous protein expression levels of MNRR1 across samples tested and cell-dependent control of its stability and binding partners. In addition to its anti-apoptotic and bioenergetic functions, MNRR1 is both necessary and sufficient for a focal adhesion and ECM repertoire that can support spheroid formation. Its ectopic expression is sufficient to induce the adhesive glycoprotein THBS4 and the type 1 collagen, COL1A1. Conversely, its deletion leads to significant downregulation of these genes. Furthermore, loss of MNRR1 leads to delay in tumor growth, curtailed carcinomatosis, and improved survival in a syngeneic ovarian cancer mouse model. These results suggest targeting MNRR1 may improve survival in ovarian cancer patients.

13.
Sci Rep ; 12(1): 15650, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123378

RESUMO

Ovarian cancer (OC) is one of the leading gynecologic cancers worldwide. Cancer stem-like cells are correlated with relapse and resistance to chemotherapy. Twist1, which is involved in ovarian cancer stem-like cell differentiation, is positively correlated with CTNNB1 in different differentiation stages of ovarian cancer cells: primary epithelial ovarian cancer cells (primary EOC cells), mesenchymal spheroid-forming cells (MSFCs) and secondary epithelial ovarian cancer cells (sEOC cells). However, the expression of ß-catenin is inversed compared to CTNNB1 in these 3 cell states. We further demonstrated that ß-catenin is regulated by the protein degradation system in MSFCs and secondary EOC but not in primary EOC cells. The differentiation process from primary EOC cells to MSFCs and sEOC cells might be due to the downregulation of ß-catenin protein levels. Finally, we found that TWIST1 can enhance ß-catenin degradation by upregulating Axin2.


Assuntos
Tumor de Krukenberg , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Diferenciação Celular , Feminino , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Proteínas Nucleares/genética , Neoplasias Ovarianas/metabolismo , Proteína 1 Relacionada a Twist/genética , beta Catenina/genética , beta Catenina/metabolismo
14.
Cancers (Basel) ; 14(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35565396

RESUMO

The tumor microenvironment of ovarian cancer is the peritoneal cavity wherein adipose tissue is a major component. The role of the adipose tissue in support of ovarian cancer progression has been elucidated in several studies from the past decades. The adipocytes, in particular, are a major source of factors, which regulate all facets of ovarian cancer progression such as acquisition of chemoresistance, enhanced metastatic potential, and metabolic reprogramming. In this review, we summarize the relevant studies, which highlight the role of adipocytes in ovarian cancer progression and offer insights into unanswered questions and possible future directions of research.

15.
Mol Metab ; 53: 101272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34144215

RESUMO

OBJECTIVE: Immature CD11b + Gr1+ myeloid cells that acquire immunosuppressive capability, also known as myeloid-derived suppressor cells (MDSCs), are a heterogeneous population of cells that regulate immune responses. Our study's objective was to elucidate the role of ovarian cancer microenvironment in regulating the immunosuppressive function of CD11b+Gr1+ myeloid cells. METHODS: All studies were performed using the intraperitoneal ID8 syngeneic epithelial ovarian cancer mouse model. Myeloid cell depletion and immunotherapy were carried out using anti-Gr1 mAb, gemcitabine treatments, and/or anti-PD1 mAb. The treatment effect was assessed by a survival curve, in situ luciferase-guided imaging, and histopathologic evaluation. Adoptive transfer assays were carried out between congenic CD45.2 and CD45.1 mice. Immune surface and intracellular markers were assessed by flow cytometry. ELISA, western blot, and RT-PCR techniques were employed to assess the protein and RNA expression of various markers. Bone marrow-derived myeloid cells were used for ex-vivo studies. RESULTS: The depletion of Gr1+ immunosuppressive myeloid cells alone and in combination with anti-PD1 immunotherapy inhibited ovarian cancer growth. In addition to the adoptive transfer studies, these findings validate the role of immunosuppressive CD11b+Gr1+ myeloid cells in promoting ovarian cancer. Mechanistic investigations showed that ID8 tumor cells and their microenvironments produced recruitment and regulatory factors for immunosuppressive CD11b+Gr1+ myeloid cells. CD11b+Gr1+ myeloid cells primed by ID8 tumors showed increased immunosuppressive marker expression and acquired an energetic metabolic phenotype promoted primarily by increased oxidative phosphorylation fueled by glutamine. Inhibiting the glutamine metabolic pathway reduced the increased oxidative phosphorylation and decreased immunosuppressive markers' expression and function. Dihydrolipoamide succinyl transferase (DLST), a subunit of α-KGDC in the TCA cycle, was found to be the most significantly elevated gene in tumor-primed myeloid cells. The inhibition of DLST reduced oxidative phosphorylation, immunosuppressive marker expression and function in myeloid cells. CONCLUSION: Our study shows that the ovarian cancer microenvironment can regulate the metabolism and function of immunosuppressive CD11b + Gr1+ myeloid cells and modulate its immune microenvironment. Targeting glutamine metabolism via DLST in immunosuppressive myeloid cells decreased their activity, leading to a reduction in the immunosuppressive tumor microenvironment. Thus, targeting glutamine metabolism has the potential to enhance the success of immunotherapy in ovarian cancer.


Assuntos
Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Glutamina/metabolismo , Células Mieloides/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Feminino , Metabolômica , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Imagem Óptica , Neoplasias Ovarianas/patologia
16.
Methods Mol Biol ; 2255: 1-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033089

RESUMO

Apoptosis is a type of programmed cell death induced by a cascade of biochemical events, which leads to distinct morphological changes characterized by cell shrinkage, membrane blebbing, chromatin condensation, and DNA fragmentation. Apoptosis is executed by a class of cysteine proteases called caspases. Caspases are synthesized as inactive pro-caspases and activated by a series of cleavage reactions. Active caspases cleave cellular substrates and are thus the main effectors of the apoptotic cell death pathway. Detection of caspase cleavage by western blot analysis is a conventional method to demonstrate the induction of apoptosis. In the context of apoptosis, the proper analysis of western blot results depends on the understanding of the mechanisms and outcomes of caspase processing during the course of its activation. In this chapter, we describe the step-by-step methodology in the western blot analysis of caspase cleavage during apoptosis. We detail protocols for protein extraction, quantitation, casting, and running gel electrophoresis and western blot analysis of caspase -8 and caspase -9 activation. The described methods can be applied to any particular protein of interest.


Assuntos
Apoptose , Western Blotting/métodos , Caspase 8/metabolismo , Caspase 9/metabolismo , Neoplasias Ovarianas/patologia , Ativação Enzimática , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
17.
Methods Mol Biol ; 2255: 13-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033090

RESUMO

The unfolded protein response is a cellular adaptive mechanism localized in the endoplasmic reticulum. It involves three phases: the detection of increased presence of unfolded proteins as a result of cellular stressors; the execution of an adaptive cascade of events aimed at the enhancement of proper protein folding and degradation of improperly folded proteins; and finally, when stress is not alleviated, the execution of programmed cell death. The main effectors of the UPR are transcription factors involved in the upregulation of either chaperone proteins or proapoptotic proteins. Two of these transcription factors are CHOP and the spliced variant of XBP-1 (XBP1s). In this chapter, we describe a quantitative PCR method to detect the upregulation of CHOP and XBP1s mRNA during Tunicamycin-induced UPR.


Assuntos
Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/genética , Fator de Transcrição CHOP/genética , Células Tumorais Cultivadas , Proteína 1 de Ligação a X-Box/genética
18.
Methods Mol Biol ; 2255: 21-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033091

RESUMO

Within the cell, proteins are segregated into different organelles depending on their function and activation status. In response to stimulus, posttranslational modifications or loss of organelle membrane integrity lead to the movement of proteins from one compartment to another. This movement of proteins or protein translocation, exerts a significant effect on protein function. This is clearly demonstrated in the context of apoptosis wherein the cytoplasmic translocation of the mitochondrial resident protein, cytochrome C, initiates the activation of the intrinsic arm of the apoptotic pathway. Experimentally, protein translocation can be demonstrated by subcellular fractionation and subsequent western blot analysis of the isolated fractions. This chapter describes the step-by-step procedure in obtaining mitochondrial and cytoplasmic fractions from cell pellets and determining their purity and integrity.


Assuntos
Apoptose , Caspases/metabolismo , Citocromos c/metabolismo , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Western Blotting , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
19.
Methods Mol Biol ; 2255: 69-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033095

RESUMO

Anoikis is a type of programmed cell death triggered by the loss of cellular interaction with the extracellular matrix (ECM) and culminates in the activation of caspases. Specific interaction between cellular receptors such as integrins and the ECM is important to maintain cellular homeostasis in normal tissues through multiple cascades. This interaction provides not only physical attachment, but more importantly, vital interaction with the actin cytoskeleton and growth factors. Normal epithelial and endothelial cells require this interaction with ECM to survive. In cancer, the acquisition of anoikis resistance is a hallmark of malignant transformation and is required in the process of metastasis formation. As such, strategies to inhibit and/or counteract anoikis resistance are important in controlling cancer progression. In this chapter, we describe the method for detecting anoikis using cell viability and caspase activity assays.


Assuntos
Anoikis , Caspases/metabolismo , Corantes Fluorescentes/química , Leucemia Monocítica Aguda/patologia , Neoplasias Ovarianas/patologia , Sobrevivência Celular , Feminino , Humanos , Leucemia Monocítica Aguda/metabolismo , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
20.
Cancers (Basel) ; 13(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477343

RESUMO

Background: Mortality from ovarian cancer remains high due to the lack of methods for early detection. The difficulty lies in the low prevalence of the disease necessitating a significantly high specificity and positive-predictive value (PPV) to avoid unneeded and invasive intervention. Currently, cancer antigen- 125 (CA-125) is the most commonly used biomarker for the early detection of ovarian cancer. In this study we determine the value of combining macrophage migration inhibitory factor (MIF), osteopontin (OPN), and prolactin (PROL) with CA-125 in the detection of ovarian cancer serum samples from healthy controls. Materials and Methods: A total of 432 serum samples were included in this study. 153 samples were from ovarian cancer patients and 279 samples were from age-matched healthy controls. The four proteins were quantified using a fully automated, multi-analyte immunoassay. The serum samples were divided into training and testing datasets and analyzed using four classification models to calculate accuracy, sensitivity, specificity, PPV, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results: The four-protein biomarker panel yielded an average accuracy of 91% compared to 85% using CA-125 alone across four classification models (p = 3.224 × 10-9). Further, in our cohort, the four-protein biomarker panel demonstrated a higher sensitivity (median of 76%), specificity (median of 98%), PPV (median of 91.5%), and NPV (median of 92%), compared to CA-125 alone. The performance of the four-protein biomarker remained better than CA-125 alone even in experiments comparing early stage (Stage I and Stage II) ovarian cancer to healthy controls. Conclusions: Combining MIF, OPN, PROL, and CA-125 can better differentiate ovarian cancer from healthy controls compared to CA-125 alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA