Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 121959, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074434

RESUMO

Changes to forests due to deforestation, or their replacement by agricultural areas, alter evapotranspiration and the partitioning of available energy. This study investigated seasonal variations in the energy balance and evapotranspiration in landscapes under different levels of anthropogenic intervention in the semi-arid region of Brazil. Micrometeorological data was obtained from September 2020 to October 2022 for three areas of the semi-arid region: preserved Caatinga (CAA, native vegetation), Caatinga under regeneration (REGE) and a deforested area (DEFA). Here, we use the Bowen ratio energy balance method. Measurements were taken of global solar radiation, air temperature, relative humidity, vapour pressure deficit, rainfall, net radiation, latent heat flux, sensible heat flux, soil heat flux, evapotranspiration, volumetric soil water content and Normalised Difference Vegetation Index. Sensible heat flux was the dominant flux in both areas with 66% for preserved Caatinga vegetation, 63% for Caatinga under regeneration and 62% deforested area. The latent heat flux was equivalent to 28% of the net radiation for preserved Caatinga vegetation, Caatinga under regeneration and deforested area. The evapotranspiration in turn responded as a function of water availability, being higher during the rainy seasons, with average values of 1.82 mm day-1 for preserved Caatinga vegetation, 2.26 mm day-1 for Caatinga under regeneration and 1.25 mm day-1 for deforested area. The Bowen ratio presented values > 1 in deforested area, preserved Caatinga vegetation and Caatinga under regeneration. Thus, it can be concluded that the change in land use alters the energy balance components, promoting reductions in available energy and latent and sensible heat fluxes during the rainy-dry transition in the deforested area. In addition, the seasonality of energy fluxes depends on water availability in the environment.


Assuntos
Estações do Ano , Brasil , Conservação dos Recursos Naturais , Florestas , Agricultura , Solo/química , Temperatura , Transpiração Vegetal
2.
Plants (Basel) ; 12(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447125

RESUMO

The in-situ quantification of turbulent flux and evapotranspiration (ET) is necessary to monitor crop performance in stressful environments. Although cacti can withstand stressful conditions, plant responses and plant-environment interactions remain unclear. Hence, the objective of our study was to investigate the interannual and seasonal behaviour of components of the surface energy balance, environmental conditions, morphophysiological parameters, biomass yield and water relations in a crop of Nopalea cochenillifera in the semi-arid region of Brazil. The data were collected from a micrometeorological tower between 2015 and 2017. The results demonstrate that net radiation was significantly higher during the wet season. Latent heat flux was not significant between the wet season and dry season. During the dry-wet transition season in particular, sensible heat flux was higher than during the other seasons. We observed a large decline in soil heat flux during the wet season. There was no difference in ET during the wet or dry seasons; however, there was a 40% reduction during the dry-wet transition. The wet seasons and wet-dry transition showed the lowest Evaporative Stress Index. The plants showed high cladode water content and biomass during the evaluation period. In conclusion, these findings indicate high rates of growth, high biomass and a high cladode water content and explain the response of the cactus regarding energy partitioning and ET.

3.
Sci Total Environ ; 895: 165102, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356760

RESUMO

Some strategies can optimise the use of water in crops under deficit, either by increasing yield or by reducing actual crop evapotranspiration (ET), to promote the sustainable intensification of production systems. The objective was to evaluate how the spacing, planting orientation, nitrogen fertilisation and intercropping strategies impact the dynamics of water in the soil, ET partitioning, and water use indicators for forage cactus and cactus-sorghum intercropping. Four experiments were conducted between 2018 and 2020 in the Brazilian semi-arid region. In the first two sites (I and II), the cladodes of the intercropped forage cactus and sorghum were spaced at 0.10, 0.20, 0.30, 0.40 and 0.50 m with rows-oriented east-west and north-south. In site III, the intercropped rows were spaced at 1.00, 1.25, 1.50 and 1.75 m. Site IV, which contained the forage cactus crop exclusively, was treated with four nitrogen levels (50, 150, 300 and 450 kg N ha-1). The management interventions improved water use more by increasing dry matter than by reducing ET in the cropping system. Intercropping promoted the greatest increase in water productivity (130 %). Increasing N doses in the forage cactus-only crop reduced ET by up to 39 % but increased deep drainage losses by up to 365 %. The most promising management practices for optimising water resources were as follows: spacing of 0.10 m between cactus plants in the intercropping trial under east-west row orientation, as it promoted greater water use efficiency (76 %); spacing of 0.30 m in the north-south orientation; and row spacing of 1.50 m, as it improved water productivity (6.89 kg m-3). Thus, interventions in management should be adopted to optimise water use in intercropping systems with forage cactus, aiming at sustainable intensification in dry environments.


Assuntos
Agricultura , Sorghum , Água , Nitrogênio , Zea mays , Grão Comestível , Fertilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA