Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Cell Biol ; 103(3): 151442, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986342

RESUMO

Urine-derived renal epithelial cells (URECs) are highly voided after kidney transplant and express typical kidney markers, including markers of kidney epithelial progenitor cells. Recently URECs have shown promising immunomodulatory properties when cultured with Peripheral Blood Mononuclear Cells (PBMCs), promoting an increase in the T regulatory cells. In vivo, kidney cells are highly exposed to damage associated molecules during both acute and chronic kidney injury. Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most -known early marker of acute and chronic kidney damage. However, its role on the evolution of renal damage has not yet been fully described, nor has its impact on the characteristics of renal-derived cells during in vitro culture. The aim of this study is to investigate the effect of NGAL on the characteristics of URECs isolated after kidney transplant, by exposing these cells to the treatment with NGAL during in vitro culture and evaluating its effect on UREC viability, proliferation, and immunomodulatory potential. The exposure of URECs to NGAL reduced their viability and proliferative capacity, promoting the onset of apoptosis. The immunomodulatory properties of URECs were partially inhibited by NGAL, without affecting the increase of Treg cells observed during UREC-PBMCs coculture. These results suggest that the exposure to NGAL may compromise some features of kidney stem and specialized cell types, reducing their viability, increasing apoptosis, and partially altering their immunomodulatory properties. Thus, NGAL could represent a target for approaches acting on its inhibition or reduction to improve functional recovery.


Assuntos
Células Epiteliais , Transplante de Rim , Lipocalina-2 , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Lipocalina-2/metabolismo
2.
J Pharm Biomed Anal ; 246: 116182, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772202

RESUMO

Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Engenharia Tecidual , Animais , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/normas , Terapia Genética/métodos , Terapia Genética/normas , Controle de Qualidade , Engenharia Tecidual/métodos , Engenharia Tecidual/normas
3.
Talanta ; 276: 126216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761653

RESUMO

Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.


Assuntos
Âmnio , Vesículas Extracelulares , Células-Tronco Mesenquimais , Secretoma , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Secretoma/metabolismo , Âmnio/química , Âmnio/citologia , Âmnio/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Controle de Qualidade , Células Cultivadas
4.
Front Bioeng Biotechnol ; 11: 1258753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033821

RESUMO

Many preclinical studies have shown that birth-associated tissues, cells and their secreted factors, otherwise known as perinatal derivatives (PnD), possess various biological properties that make them suitable therapeutic candidates for the treatment of numerous pathological conditions. Nevertheless, in the field of PnD research, there is a lack of critical evaluation of the PnD standardization process: from preparation to in vitro testing, an issue that may ultimately delay clinical translation. In this paper, we present the PnD e-questionnaire developed to assess the current state of the art of methods used in the published literature for the procurement, isolation, culturing preservation and characterization of PnD in vitro. Furthermore, we also propose a consensus for the scientific community on the minimal criteria that should be reported to facilitate standardization, reproducibility and transparency of data in PnD research. Lastly, based on the data from the PnD e-questionnaire, we recommend to provide adequate information on the characterization of the PnD. The PnD e-questionnaire is now freely available to the scientific community in order to guide researchers on the minimal criteria that should be clearly reported in their manuscripts. This review is a collaborative effort from the COST SPRINT action (CA17116), which aims to guide future research to facilitate the translation of basic research findings on PnD into clinical practice.

5.
Life (Basel) ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374085

RESUMO

Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.

6.
Cells ; 12(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371100

RESUMO

Kidney transplantation is a lifesaving procedure for patients with end-stage kidney disease (ESKD). Organs derived from donation after cardiac death (DCD) are constantly increasing; however, DCD often leads to ischaemia-reperfusion (IR) and Acute Kidney Injury (AKI) events. These phenomena increase kidney cell turnover to replace damaged cells, which are voided in urine. Urine-derived renal epithelial cells (URECs) are rarely present in the urine of healthy subjects, and their loss has been associated with several kidney disorders. The present study aimed to characterize the phenotype and potential applications of URECs voided after transplant. The results indicate that URECs are highly proliferating cells, expressing several kidney markers, including markers of kidney epithelial progenitor cells. Since the regulation of the immune response is crucial in organ transplantation and new immunoregulatory strategies are needed, UREC immunomodulatory properties were investigated. Co-culture with peripheral blood mononuclear cells (PBMCs) revealed that URECs reduced PBMC apoptosis, inhibited lymphocyte proliferation, increased T regulatory (Treg) cells and reduced T helper 1 (Th1) cells. URECs from transplanted patients represent a promising cell source for the investigation of regenerative processes occurring in kidneys, and for cell-therapy applications based on the regulation of the immune response.


Assuntos
Injúria Renal Aguda , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Biomarcadores/metabolismo , Imunidade , Células Epiteliais/metabolismo
7.
Biomolecules ; 13(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371551

RESUMO

Oxidative stress (OS) occurs when the production of reactive oxygen species (ROS) is not balanced by the body's antioxidant defense system. OS can profoundly affect cellular health and function. ROS can have a profound negative impact on cells that undergo a predestined and time-regulated process of proliferation or differentiation, such as perinatal stem cells. Due to the large-scale employment of these immunotolerant stem cells in regenerative medicine, it is important to reduce OS to prevent them from losing function and increase their application in the regenerative medicine field. This goal can be achieved through a variety of strategies, such as the use of antioxidants and other compounds that can indirectly modulate the antioxidant defense system by enhancing cellular stress response pathways, including autophagy and mitochondrial function, thereby reducing ROS levels. This review aims to summarize information regarding OS mechanisms in perinatal stem cells and possible strategies for reducing their deleterious effects.


Assuntos
Antioxidantes , Medicina Regenerativa , Gravidez , Feminino , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Diferenciação Celular
8.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175911

RESUMO

Mesenchymal stromal/stem cells (MSCs) are multipotent cells with differentiation, immunoregulatory and regenerative properties. Because of these features, they represent an attractive tool for regenerative medicine and cell-based therapy. However, MSCs may act as a reservoir of persistent viruses increasing the risk of failure of MSCs-based therapies and of viral transmission, especially in immunocompromised patients. Parvovirus B19V (B19V) is a common human pathogen that infects bone marrow erythroid progenitor cells, leading to transient or persistent anemia. Characteristics of B19V include the ability to cross the placenta, infecting the fetus, and to persist in several tissues. We thus isolated MSCs from bone marrow (BM-MSCs) and fetal membrane (FM-MSCs) to investigate their permissiveness to B19V infection. The results suggest that both BM- and FM- MSCs can be infected by B19V and, while not able to support viral replication, allow persistence over time in the infected cultures. Future studies are needed to understand the potential role of MSCs in B19V transmission and the conditions that can favor a potential reactivation of the virus.


Assuntos
Eritema Infeccioso , Células-Tronco Mesenquimais , Infecções por Parvoviridae , Parvovirus B19 Humano , Gravidez , Feminino , Humanos , Parvovirus B19 Humano/genética , Replicação Viral/fisiologia , DNA Viral
9.
Bioengineering (Basel) ; 10(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829683

RESUMO

Type 1 diabetes mellitus (T1DM) is a complex metabolic disease characterized by a massive loss of insulin-producing cells due to an autoimmune reaction. Currently, daily subcutaneous administration of exogenous insulin is the only effective treatment. Therefore, in recent years considerable interest has been given to stem cell therapy and in particular to the use of three-dimensional (3D) cell cultures to better reproduce in vivo conditions. The goal of this study is to provide a reliable cellular model that could be investigated for regenerative medicine applications for the replacement of insulin-producing cells in T1DM. To pursue this aim we create a co-culture spheroid of amniotic epithelial cells (AECs) and Wharton's jelly mesenchymal stromal cells (WJ-MSCs) in a one-to-one ratio. The resulting co-culture spheroids were analyzed for viability, extracellular matrix production, and hypoxic state in both early- and long-term cultures. Our results suggest that co-culture spheroids are stable in long-term culture and are still viable with a consistent extracellular matrix production evaluated with immunofluorescence staining. These findings suggest that this co-culture may potentially be differentiated into endo-pancreatic cells for regenerative medicine applications in T1DM.

10.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829691

RESUMO

The neoplastic Hodgkin-Reed-Sternberg (HRS) cells in Hodgkin lymphoma (HL) represent only 1-10% of cells and are surrounded by an inflammatory microenvironment. The HL cytokine network is a key point for the proliferation of HRS cells and for the maintenance of an advantageous microenvironment for HRS survival. In the tumor microenvironment (TME), the fibroblasts are involved in crosstalk with HRS cells. The aim of this work was to study the effect of lymphoma cell conditioned medium on a fibroblast cell population and evaluate modifications of cell morphology and proliferation. Hodgkin lymphoma-derived medium was used to obtain a population of "conditioned" fibroblasts (WS-1 COND). Differences in biophysical parameters were detected by the innovative device Celector®. Fibroblast-HL cells interactions were reproduced in 3D co-culture spheroids. WS-1 COND showed a different cellular morphology with an enlarged cytoplasm and enhanced metabolism. Area and diameter cell values obtained by Celector® measurement were increased. Co-culture spheroids created with WS-1 COND showed a tighter aggregation than those with non-conditioned WS-1. The presence of soluble factors derived from HRS cells in the conditioned medium was adequate for the proliferation of fibroblasts and conditioned fibroblasts in a 3D HL model allowed to develop a representative model of the in vivo TME.

11.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498923

RESUMO

Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Gravidez , Feminino , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Cordão Umbilical , Transplante de Células-Tronco
13.
Bioengineering (Basel) ; 9(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447702

RESUMO

Adipose tissue is an attractive source of stem cells due to its wide availability. They contribute to the stromal vascular fraction (SVF), which is composed of pre-adipocytes, tissue-progenitors, and pericytes, among others. Because its direct use in medical applications is increasing worldwide, new quality control systems are required. We investigated the ability of the Non-Equilibrium Earth Gravity Assisted Dynamic Fractionation (NEEGA-DF) method to analyze and separate cells based solely on their physical characteristics, resulting in a fingerprint of the biological sample. Adipose tissue was enzymatically digested, and the SVF was analyzed by NEEGA-DF. Based on the fractogram (the UV signal of eluting cells versus time of analysis) the collection time was set to sort alive cells. The collected cells (F-SVF) were analyzed for their phenotype, immunomodulation ability, and differentiation potential. The SVF profile showed reproducibility, and the alive cells were collected. The F-SVF showed intact adhesion phenotype, proliferation, and differentiation potential. The methodology allowed enrichment of the mesenchymal component with a higher expression of mesenchymal markers and depletion of debris, RBCs, and an extracellular matrix still present in the digestive product. Moreover, cells eluting in the last minutes showed higher circularity and lower area, proving the principles of enrichment of a more homogenous cell population with better characteristics. We proved the NEEGA-DF method is a "gentle" cell sorter that purifies primary cells obtained by enzymatic digestion and does not alter any stem cell function.

14.
J Clin Med ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268327

RESUMO

Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs. The addition to the basal culture medium of a chemically defined and animal-free tailored lipid supplement, namely Refeed®, partially restored the membrane fatty acid signature of hAECs. Although the amelioration of the membrane composition did not prolong hAECs culture lifespan, Refeed® influenced cell morphology, counteracted the onset of senescence, and increased the migratory capacity as well as the ability of hAECs to inhibit Peripheral Blood Mononuclear Cell (PBMC) proliferation. This study provides new information on hAEC features during culture passages and demonstrates that the maintenance of the membrane fatty acid signature preserved higher cell quality during in vitro expansion, suggesting the use of lipid supplementation for SC expansion in cell-based therapies.

15.
Bioengineering (Basel) ; 9(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35200403

RESUMO

Mesenchymal stem cells (MSC) make up less than 1% of the bone marrow (BM). Several methods are used for their isolation such as gradient separation or centrifugation, but these methodologies are not direct and, thus, plastic adherence outgrowth or magnetic/fluorescent-activated sorting is required. To overcome this limitation, we investigated the use of a new separative technology to isolate MSCs from BM; it label-free separates cells based solely on their physical characteristics, preserving their native physical properties, and allows real-time visualization of cells. BM obtained from patients operated for osteochondral defects was directly concentrated in the operatory room and then analyzed using the new technology. Based on cell live-imaging and the sample profile, it was possible to highlight three fractions (F1, F2, F3), and the collected cells were evaluated in terms of their morphology, phenotype, CFU-F, and differentiation potential. Multipotent MSCs were found in F1: higher CFU-F activity and differentiation potential towards mesenchymal lineages compared to the other fractions. In addition, the technology depletes dead cells, removing unwanted red blood cells and non-progenitor stromal cells from the biological sample. This new technology provides an effective method to separate MSCs from fresh BM, maintaining their native characteristics and avoiding cell manipulation. This allows selective cell identification with a potential impact on regenerative medicine approaches in the orthopedic field and clinical applications.

16.
J Cancer Res Clin Oncol ; 148(4): 753-765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091834

RESUMO

PURPOSE: Three dimensional (3D) "in vitro" models are progressively being applied to investigate tumor cell biology and the interaction of cancer cells with tumor microenvironment under conditions more similar and realistic to "in vivo" behavior than standard bidimensional (2D) cultures. METHODS: In the last years, different methods have been developed to create spheroids and organoids and each technique has advantages and limitations also based on individual needs and cell types used. This review offers an overview of methodologies used for 3D systems: scaffold-free and scaffold-based methods up to bioreactors and organ-on-chip models. RESULTS: The principal goal for researchers is to select the 3D system that best suits their needs and that reflects the tumor model they want to study. A large chapter is dedicated to the application of these models to lymphomas' study, a neoplasm still little explored in the 3D field. CONCLUSION: These innovative and advanced models may represent new tools for cancer research and pre-clinical studies of new therapies in the perspective of precision medicine.


Assuntos
Linfoma , Neoplasias , Humanos , Neoplasias/patologia , Organoides/patologia , Medicina de Precisão , Esferoides Celulares/patologia , Microambiente Tumoral
17.
Antibiotics (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206190

RESUMO

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.

18.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209410

RESUMO

The use of stem cells for regenerative applications and immunomodulatory effect is increasing. Amniotic epithelial cells (AECs) possess embryonic-like proliferation ability and multipotent differentiation potential. Despite the simple isolation procedure, inter-individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investigated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label-free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the fractogram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications.

19.
Cells ; 10(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467440

RESUMO

Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector® (Stem Sel ltd.) is a new technology that exploits the Non-Equilibrium Earth Gravity Assisted Field Flow Fractionation principles to characterize and label-free sort stem cells based on their solely physical characteristics without any manipulation. Viable cells are collected and used for further studies or direct applications. In order to understand the intrapopulation heterogeneity, various fractions of hAFSCs were isolated using the Celector® profile and live imaging feature. The gene expression profile of each fraction was analysed using whole-transcriptome sequencing (RNAseq). Gene Set Enrichment Analysis identified significant differential expression in pathways related to Stemness, DNA repair, E2F targets, G2M checkpoint, hypoxia, EM transition, mTORC1 signalling, Unfold Protein Response and p53 signalling. These differences were validated by RT-PCR, immunofluorescence and differentiation assays. Interestingly, the different fractions showed distinct and unique stemness properties. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting certain cellular fractions with the highest potential to use in regenerative medicine.


Assuntos
Líquido Amniótico/citologia , Células-Tronco/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Células-Tronco Multipotentes/citologia , RNA-Seq , Medicina Regenerativa , Transdução de Sinais , Transcriptoma
20.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916865

RESUMO

Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Mesenquimais/fisiologia , Linhagem da Célula , Humanos , Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA