Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261399

RESUMO

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Assuntos
Siadenovirus , Transporte Ativo do Núcleo Celular , Transporte Proteico , Sinais de Localização Nuclear/genética , Carioferinas
2.
FEBS Lett ; 598(2): 199-209, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158756

RESUMO

Human cytomegalovirus DNA polymerase processivity factor UL44 is transported into the nucleus by importin (IMP) α/ß through a classical nuclear localization signal (NLS), and this region is susceptible to cdc2-mediated phosphorylation at position T427. Whilst phosphorylation within and close to the UL44 NLS regulates nuclear transport, the details remain elusive, due to the paucity of structural information regarding the role of negatively charged cargo phosphate groups. We addressed this issue by studying the effect of UL44 T427 phosphorylation on interaction with several IMPα isoforms by biochemical and structural approaches. Phosphorylation decreased UL44/IMPα affinity 10-fold, and a comparative structural analysis of UL44 NLS phosphorylated and non-phosphorylated peptides complexed with mouse IMPα2 revealed the structural rearrangements responsible for phosphorylation-dependent inhibition of UL44 nuclear import.


Assuntos
Núcleo Celular , Citomegalovirus , Animais , Humanos , Camundongos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fosforilação
3.
Protein Sci ; 33(2): e4876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108201

RESUMO

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Assuntos
Antígenos de Neoplasias , Sinais de Localização Nuclear , alfa Carioferinas , Humanos , Transporte Ativo do Núcleo Celular/fisiologia , alfa Carioferinas/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo
4.
Viruses ; 15(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36992421

RESUMO

Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.


Assuntos
Proteínas de Fusão gag-pol , Protease de HIV , Humanos , Protease de HIV/genética , Protease de HIV/metabolismo , Proteólise , Proteínas de Fusão gag-pol/metabolismo , Endopeptidases/metabolismo , Vírion/metabolismo , Antivirais
5.
Antiviral Res ; 213: 105588, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990397

RESUMO

Human parvovirus B19 (B19V) is a major human pathogen causing a variety of diseases, characterized by a selective tropism to human progenitor cells in bone marrow. In similar fashion to all Parvoviridae members, the B19V ssDNA genome is replicated within the nucleus of infected cells through a process which involves both cellular and viral proteins. Among the latter, a crucial role is played by non-structural protein (NS)1, a multifunctional protein involved in genome replication and transcription, as well as modulation of host gene expression and function. Despite the localization of NS1 within the host cell nucleus during infection, little is known regarding the mechanism of its nuclear transport pathway. In this study we undertake structural, biophysical, and cellular approaches to characterize this process. Quantitative confocal laser scanning microscopy (CLSM), gel mobility shift, fluorescence polarization and crystallographic analysis identified a short sequence of amino acids (GACHAKKPRIT-182) as the classical nuclear localization signal (cNLS) responsible for nuclear import, mediated in an energy and importin (IMP) α/ß-dependent fashion. Structure-guided mutagenesis of key residue K177 strongly impaired IMPα binding, nuclear import, and viral gene expression in a minigenome system. Further, treatment with ivermectin, an antiparasitic drug interfering with the IMPα/ß dependent nuclear import pathway, inhibited NS1 nuclear accumulation and viral replication in infected UT7/Epo-S1 cells. Thus, NS1 nuclear transport is a potential target of therapeutic intervention against B19V induced disease.


Assuntos
Parvovirus B19 Humano , Humanos , Parvovirus B19 Humano/genética , Transporte Ativo do Núcleo Celular , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
J Cell Mol Med ; 26(14): 3977-3994, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35706382

RESUMO

Human epithelial stem cells (ESCs) are characterized by long-term regenerative properties, much dependent on the tissue of origin and varying during their lifespan. We analysed such variables in cultures of ESCs isolated from the skin, conjunctiva, limbus and oral mucosa of healthy donors and patients affected by ectrodactyly-ectodermal dysplasia-clefting syndrome, a rare genetic disorder caused by mutations in the p63 gene. We cultured cells until exhaustion in the presence or in the absence of DAPT (γ-secretase inhibitor; N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine T-butyl ester). All cells were able to differentiate in vitro but exhibited variable self-renewal potential. In particular, cells carrying p63 mutations stopped prematurely, compared with controls. Importantly, administration of DAPT significantly extended the replicative properties of all stem cells under examination. RNA sequencing analysis revealed that distinct sets of genes were up- or down-regulated during their lifetime, thus allowing to identify druggable gene networks and off-the-shelf compounds potentially dealing with epithelial stem cell senescence. These data will expand our knowledge on the genetic bases of senescence and potentially pave the way to the pharmacological modulation of ageing in epithelial stem cells.


Assuntos
Fenda Labial , Fissura Palatina , Displasia Ectodérmica , Fenda Labial/diagnóstico , Fissura Palatina/diagnóstico , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Inibidores da Agregação Plaquetária , Células-Tronco
7.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439242

RESUMO

Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein-protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.

9.
Nat Commun ; 12(1): 4383, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282139

RESUMO

In February and March 2020, two mass swab testing campaigns were conducted in Vo', Italy. In May 2020, we tested 86% of the Vo' population with three immuno-assays detecting antibodies against the spike and nucleocapsid antigens, a neutralisation assay and Polymerase Chain Reaction (PCR). Subjects testing positive to PCR in February/March or a serological assay in May were tested again in November. Here we report on the results of the analysis of the May and November surveys. We estimate a seroprevalence of 3.5% (95% Credible Interval (CrI): 2.8-4.3%) in May. In November, 98.8% (95% Confidence Interval (CI): 93.7-100.0%) of sera which tested positive in May still reacted against at least one antigen; 18.6% (95% CI: 11.0-28.5%) showed an increase of antibody or neutralisation reactivity from May. Analysis of the serostatus of the members of 1,118 households indicates a 26.0% (95% CrI: 17.2-36.9%) Susceptible-Infectious Transmission Probability. Contact tracing had limited impact on epidemic suppression.


Assuntos
Anticorpos Antivirais/imunologia , Teste para COVID-19/métodos , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/imunologia , Testes Sorológicos/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Busca de Comunicante , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Itália/epidemiologia , Masculino , Nucleocapsídeo , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Viruses ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065234

RESUMO

Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS patients and transplant recipients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets for therapeutic intervention. Among the latter, viral protein-protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle, being required for oriLyt-dependent DNA replication, it can be considered a potential therapeutic target. We therefore performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB4-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited HCMV AD169 strain in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with the inhibition of viral DNA synthesis measured by qPCR starting from 72 h post infection. Therefore, our data suggest that inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.


Assuntos
Antivirais/química , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Replicação Viral/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Citomegalovirus/genética , Relação Dose-Resposta a Droga , Descoberta de Drogas , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
11.
Microorganisms ; 9(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925913

RESUMO

Human cytomegalovirus (HCMV) genome replication is a complex and still not completely understood process mediated by the highly coordinated interaction of host and viral products. Among the latter, six different proteins form the viral replication complex: a single-stranded DNA binding protein, a trimeric primase/helicase complex and a two subunit DNA polymerase holoenzyme, which in turn contains a catalytic subunit, pUL54, and a dimeric processivity factor ppUL44. Being absolutely required for viral replication and representing potential therapeutic targets, both the ppUL44-pUL54 interaction and ppUL44 homodimerization have been largely characterized from structural, functional and biochemical points of view. We applied fluorescence and bioluminescence resonance energy transfer (FRET and BRET) assays to investigate such processes in living cells. Both interactions occur with similar affinities and can take place both in the nucleus and in the cytoplasm. Importantly, single amino acid substitutions in different ppUL44 domains selectively affect its dimerization or ability to interact with pUL54. Intriguingly, substitutions preventing DNA binding of ppUL44 influence the BRETmax of protein-protein interactions, implying that binding to dsDNA induces conformational changes both in the ppUL44 homodimer and in the DNA polymerase holoenzyme. We also compared transiently and stably ppUL44-expressing cells in BRET inhibition assays. Transient expression of the BRET donor allowed inhibition of both ppUL44 dimerization and formation of the DNA polymerase holoenzyme, upon overexpression of FLAG-tagged ppUL44 as a competitor. Our approach could be useful both to monitor the dynamics of assembly of the HCMV DNA polymerase holoenzyme and for antiviral drug discovery.

12.
Viruses ; 12(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962117

RESUMO

Despite the introduction of directly acting antivirals (DAAs), for the treatment of hepatitis C virus (HCV) infection, their cost, patient compliance, and viral resistance are still important issues to be considered. Here, we describe the generation of a novel JFH1-based HCV subgenomic replicon double reporter cell line suitable for testing different antiviral drugs and therapeutic interventions. This cells line allowed a rapid and accurate quantification of cell growth/viability and HCV RNA replication, thus discriminating specific from unspecific antiviral effects caused by DAAs or cytotoxic compounds, respectively. By correlating cell number and virus replication, we could confirm the inhibitory effect on the latter of cell over confluency and characterize an array of lentiviral vectors expressing single, double, or triple cassettes containing different combinations of short hairpin (sh)RNAs, targeting both highly conserved viral genome sequences and cellular factors crucial for HCV replication. While all vectors were effective in reducing HCV replication, the ones targeting viral sequences displayed a stronger antiviral effect, without significant cytopathic effects. Such combinatorial platforms as well as the developed double reporter cell line might find application both in setting-up anti-HCV gene therapy approaches and in studies aimed at further dissecting the viral biology/pathogenesis of infection.


Assuntos
Antivirais/farmacologia , Vetores Genéticos , Lentivirus/genética , RNA Interferente Pequeno/genética , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Genética , Genoma Viral , Células HEK293 , Hepacivirus/genética , Hepatite C/virologia , Humanos , RNA Interferente Pequeno/metabolismo , Replicon/efeitos dos fármacos , Proteínas não Estruturais Virais/genética
13.
Microorganisms ; 8(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183205

RESUMO

Bovine herpesvirus1 (BoHV-1) is a major bovine pathogen. Despite several vaccines being available to prevent viral infection, outbreaks are frequent and cause important economic consequences worldwide. The development of new antiviral drugs is therefore highly desirable. In this context, viral genome replication represents a potential target for therapeutic intervention. BoHV-1 genome is a dsDNA molecule whose replication takes place in the nuclei of infected cells and is mediated by a viral encoded DNA polymerase holoenzyme. Here, we studied the physical interaction and subcellular localization of BoHV-1 DNA polymerase subunits in cells for the first time. By means of co-immunoprecipitation and confocal laser scanning microscopy (CLSM) experiments, we could show that the processivity factor of the DNA polymerase pUL42 is capable of being autonomously transported into the nucleus, whereas the catalytic subunit pUL30 is not. Accordingly, a putative classic NLS (cNLS) was identified on pUL42 but not on pUL30. Importantly, both proteins could interact in the absence of other viral proteins and their co-expression resulted in accumulation of UL30 to the cell nucleus. Treatment of cells with Ivermectin, an anti-parasitic drug which has been recently identified as an inhibitor of importin α/ß-dependent nuclear transport, reduced UL42 nuclear import and specifically reduced BoHV-1 replication in a dose-dependent manner, while virus attachment and entry into cells were not affected. Therefore, this study provides a new option of antiviral therapy for BoHV-1 infection with Ivermectin.

14.
Int J Mol Med ; 44(2): 768, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31173160

RESUMO

After the publication of the above paper, the authors noted that the names of a couple of the authors listed on the paper were associated with the wrong affliation: Specifically, the eighth and ninth listed authors, Francesca Antonaros and Allison Piovesan, are located at DIMES at the University of Florence (fourth affiliation address), not at CSGI, the Research Center for Colloids and Nanoscience in Florence (third affliation address). Therefore, the author and affiliation details for this paper should have been presented as follows: ALESSANDRO SALVI1, MARIKA VEZZOLI2, SARA BUSATTO1, LUCIA PAOLINI1,3, TERESA FARANDA1, EDOARDO ABENI1, MARIA CARACAUSI4, FRANCESCA ANTONAROS4, ALLISON PIOVESAN4, CHIARA LOCATELLI5, GUIDO COCCHI5,6, GUALTIERO ALVISI7, GIUSEPPINA DE PETRO1, DORIS RICOTTA1, PAOLO BERGESE1,3 and ANNALISA RADEGHIERI1,3. 1Department of Molecular and Translational Medicine, University of Brescia; 2Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, I­25123 Brescia; 3CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I­50019 Florence; 4Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna; 5Neonatology Unit, St. Orsola­Malpighi Polyclinic; 6Department of Medical and Surgical Sciences (DIMEC), University of Bologna, I­40138 Bologna; 7Department of Molecular Medicine, University of Padua, I­35121 Padua, Italy. The authors regret that this error with the author affiliations for Francesca Antonaros and Allison Piovesan was not noticed prior to the publication of their paper, and apologize for any inconvenience caused. [the original article was published in International Journal of Molecular Medicine 43: 2303­2318, 2018; DOI: 10.3892/ijmm.2019.4158].

15.
Hum Gene Ther ; 30(8): 923-945, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020856

RESUMO

Corneal diseases are among the most prevalent causes of blindness worldwide. The transparency and clarity of the cornea are guaranteed by a delicate physiological, anatomic, and functional balance. For this reason, all the disorders, including those of genetic origin, that compromise this state of harmony can lead to opacity and eventually vision loss. Many corneal disorders have a genetic etiology, and some are associated with rather rare and complex syndromes. Conventional treatments, such as corneal transplantation, are often ineffective, and to date, many of these disorders are still incurable. Gene therapy carries the promise of being a potential cure for many of these diseases, with solutions and strategies that did not seem possible until a few years ago. With its potential to treat genetic disease by means of deletion, replacement, or editing of a defective gene, the challenge can also be extended to corneal disorders in order to achieve long-term, if not definitive, relief. The aim of this paper is to review the state of the art of the different gene therapy approaches as potential treatments for corneal diseases and the future perspectives for the development of personalized gene-based medicine.


Assuntos
Córnea/metabolismo , Doenças da Córnea/etiologia , Doenças da Córnea/terapia , Terapia Genética , Animais , Terapia Combinada , Doenças da Córnea/diagnóstico , Doenças da Córnea/epidemiologia , Suscetibilidade a Doenças , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Incidência , Resultado do Tratamento
16.
Int J Mol Med ; 43(6): 2303-2318, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31017260

RESUMO

Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA­carriers were separated from the plasma of young participants with DS and their non­trisomic siblings and miRNAs were extracted. A microarray­based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR­16­5p, miR­99b­5p and miR­144­3p. These miRNAs were then profiled for 15 pairs of DS and non­trisomic sibling couples by reverse transcription­quantitative polymerase chain reaction (RT­qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non­trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS­associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.


Assuntos
Síndrome de Down/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Down/sangue , Feminino , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/isolamento & purificação , Nanopartículas/química , Adulto Jovem
17.
Viruses ; 11(3)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893774

RESUMO

Ebola Virus Disease (EVD) is one of the most lethal transmissible infections, characterized by a high fatality rate, and caused by a member of the Filoviridae family. The recent large outbreak of EVD in Western Africa (2013⁻2016) highlighted the worldwide threat represented by the disease and its impact on global public health and the economy. The development of highly needed anti-Ebola virus antivirals has been so far hampered by the shortage of tools to study their life cycle in vitro, allowing to screen for potential active compounds outside a biosafety level-4 (BSL-4) containment. Importantly, the development of surrogate models to study Ebola virus entry in a BSL-2 setting, such as viral pseudotypes and Ebola virus-like particles, tremendously boosted both our knowledge of the viral life cycle and the identification of promising antiviral compounds interfering with viral entry. In this context, the combination of such surrogate systems with large-scale small molecule compounds and haploid genetic screenings, as well as rational drug design and drug repurposing approaches will prove priceless in our quest for the development of a treatment for EVD.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/farmacologia , Surtos de Doenças/prevenção & controle , Desenho de Fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Camundongos , Vacinas de Partículas Semelhantes a Vírus
18.
Cell Reprogram ; 20(4): 215-224, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29989433

RESUMO

Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare monogenic disease with autosomal dominant inheritance caused by mutations in the TP63 gene, leading to progressive corneal keratinocyte loss, limbal stem cell deficiency (LSCD), and eventually blindness. Currently, there is no treatment available to cure or slow down the keratinocyte loss. Human oral mucosal epithelial stem cells (hOMESCs), which are a mixed population of keratinocyte precursor stem cells, are used as source of autologous tissue for treatment of bilateral LSCD. However, hOMESCs from EEC patients have a reduced life span due to TP63 mutations and cannot be used for autologous transplantation. Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of autologous limbal stem cell for EEC patients and can be genetically modified by genome editing technologies to correct the disease ex vivo before transplantation. In this study, we describe for the first time the generation of integration-free EEC-hiPSCs from hOMESCs of EEC patients by Sendai virus vector and episomal vector-based reprogramming. The generated hiPSC clones expressed pluripotency markers and were successfully differentiated into derivatives of the three germ layers, as well as toward corneal epithelium. These cells may be used for EEC disease modeling and open perspectives for applications in cell therapy of LSCD.


Assuntos
Biomarcadores/análise , Diferenciação Celular , Fenda Labial/patologia , Fissura Palatina/patologia , Displasia Ectodérmica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mucosa Bucal/patologia , Células Cultivadas , Fenda Labial/genética , Fenda Labial/metabolismo , Fissura Palatina/genética , Fissura Palatina/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Bucal/metabolismo , Mutação , Fenótipo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
19.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1114-1129, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29750988

RESUMO

Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/ß1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes.


Assuntos
Carioferinas/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Núcleo Celular/metabolismo , Biologia Computacional , Cristalografia por Raios X , Citomegalovirus/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Virais/química , Proteínas Virais/metabolismo
20.
Viruses ; 10(3)2018 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510513

RESUMO

Respiratory syncytial virus (RSV) is an important human pathogen, which infects respiratory tract epithelial cells causing bronchiolitis and pneumonia in children and the elderly. Recent studies have linked RSV matrix (M) ability to self-interaction and viral budding. However, RSV M has been crystalized both as a monomer and a dimer, and no formal proof exists to date that it forms dimers in cells. Here, by using a combination of confocal laser scanning microscopy and bioluminescent resonant energy transfer applied to differently tagged deletion mutants of RSV M, we show that the protein can self-interact in living mammalian cells and that both the N and C-terminus of the protein are strictly required for the process, consistent with the reported dimeric crystal structure.


Assuntos
Multimerização Proteica , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Humanos , Espaço Intracelular , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Transporte Proteico , Deleção de Sequência , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Montagem de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA