Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 223: 105821, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272318

RESUMO

Although antimicrobial peptides have been shown to inactivate viruses through disruption of their viral envelopes, clinical use of such peptides has been hampered by a number of factors, especially their enzymatically unstable structures. To overcome the shortcomings of antimicrobial peptides, peptoids (sequence-specific N-substituted glycine oligomers) mimicking antimicrobial peptides have been developed. We aimed to demonstrate the antiviral effects of antimicrobial peptoids against hepatitis B virus (HBV) in cell culture. The anti-HBV activity of antimicrobial peptoids was screened and evaluated in an infection system involving the HBV reporter virus and HepG2.2.15-derived HBV. By screening with the HBV reporter virus infection system, three (TM1, TM4, and TM19) of 12 peptoids were identified as reducing the infectivity of HBV, though they did not alter the production levels of HBs antigen in cell culture. These peptoids were not cytotoxic at the evaluated concentrations. Among these peptoids, TM19 was confirmed to reduce HBV infection most potently in a HepG2.2.15-derived HBV infection system that closely demonstrates authentic HBV infection. In cell culture, the most effective administration of TM19 was virus treatment at the infection step, but the reduction in HBV infectivity by pre-treatment or post-treatment of cells with TM19 was minimal. The disrupting effect of TM19 targeting infectious viral particles was clarified in iodixanol density gradient analysis. In conclusion, the peptoid TM19 was identified as a potent inhibitor of HBV. This peptoid prevents HBV infection by disrupting viral particles and is a candidate for a new class of anti-HBV reagents.


Assuntos
Anti-Infecciosos , Hepatite B , Peptoides , Humanos , Vírus da Hepatite B , Peptoides/farmacologia , Peptoides/química , Hepatite B/tratamento farmacológico , Técnicas de Cultura de Células , Antivirais/farmacologia , Peptídeos Antimicrobianos
2.
J Virol ; 97(10): e0128723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800948

RESUMO

IMPORTANCE: The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.


Assuntos
Vírus da Hepatite B , Hepatite B , Proteína 1 Associada a ECH Semelhante a Kelch , Transdução de Sinais , Replicação Viral , Humanos , Elementos de Resposta Antioxidante , Hepatite B/genética , Vírus da Hepatite B/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
3.
Nat Commun ; 13(1): 5207, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064848

RESUMO

Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.


Assuntos
Vacinas contra Hepatite B , Hepatite B , Animais , Hepatite B/prevenção & controle , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B/genética , Vacinas contra Hepatite B/uso terapêutico , Vírus da Hepatite B/genética , Macaca mulatta , Mutação
4.
Cell Mol Gastroenterol Hepatol ; 12(5): 1583-1598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34352407

RESUMO

BACKGROUND & AIMS: To provide an adequate treatment strategy for chronic hepatitis B, it is essential to know which patients are expected to have a good prognosis and which patients do not require therapeutic intervention. Previously, we identified the substitution of isoleucine to leucine at amino acid 97 (I97L) in the hepatitis B core region as a key predictor among patients with stable hepatitis. In this study, we attempted to identify the point at which I97L affects the hepatitis B virus (HBV) life cycle and to elucidate the underlying mechanisms governing the stabilization of hepatitis. METHODS: To confirm the clinical features of I97L, we used a cohort of hepatitis B e antigen-negative patients with chronic hepatitis B infected with HBV-I97 wild-type (wt) or HBV-I97L. The effects of I97L on viral characteristics were evaluated by in vitro HBV production and infection systems with the HBV reporter virus and cell culture-generated HBV. RESULTS: The ratios of reduction in hepatitis B surface antigen and HBV DNA were higher in patients with HBV-I97L than in those with HBV-I97wt. HBV-I97L exhibited lower infectivity than HBV-I97wt in both infection systems with reporter HBV and cell culture-generated HBV. HBV-I97L virions exhibiting low infectivity primarily contained a single-stranded HBV genome. The lower efficiency of cccDNA synthesis was demonstrated after infection of HBV-I97L or transfection of the molecular clone of HBV-I97L. CONCLUSIONS: The I97L substitution reduces the level of cccDNA through the generation of immature virions with single-stranded genomes. This I97L-associated low efficiency of cccDNA synthesis may be involved in the stabilization of hepatitis.


Assuntos
Substituição de Aminoácidos , Vírus da Hepatite B/genética , Hepatite B/virologia , Polimorfismo Genético , Proteínas Virais/genética , Adulto , Biomarcadores , Técnicas de Cultura de Células , DNA Viral , Progressão da Doença , Feminino , Regulação Viral da Expressão Gênica , Genes Reporter , Engenharia Genética , Hepatite B/diagnóstico , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas Virais/química , Replicação Viral
5.
Microbiol Immunol ; 65(9): 352-372, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33990999

RESUMO

An estimated 8-10 million people suffer from viral hepatitis in Egypt. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of viral hepatitis in Egypt as 50% or more of the Egyptian population are already exposed to HAV infection by the age of 15. In addition, over 60% of the Egyptian population test seropositive for anti-HEV in the first decade of life. HEV mainly causes self-limiting hepatitis; however, cases of fulminant hepatitis and liver failure were reported in Egypt. Hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis D virus (HDV) are the main causes of chronic hepatitis, liver cirrhosis, and liver cancer (hepatocellular carcinoma [HCC]) in Egypt. Globally, Egypt had the highest age-standardized death rate due to cirrhosis from 1990 to 2017. The prevalence rate of HBV (1.3%-1.5%) has declined after national infantile immunization. Coinfection of HBV patients with HDV is common in Egypt because HDV antibodies (IgG) vary in range from 8.3% to 43% among total HBV patients. After the conduction of multiple national programs to control HCV infection, a lower rate of HCV prevalence (4.6%) was recently reported. Data about the incidence of HCV after treatment with direct antiviral agents (DAAs) are lacking. An HCC incidence of 29/1000/year in cirrhotic patients after DAA treatment is reported. A higher rate of infiltrative pattern among HCC patients after DAA treatment is also recognized. Viral hepatitis is one of the major public health concerns in Egypt that needs more attention and funding from health policymakers.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Hepatite Viral Humana , Neoplasias Hepáticas , Antivirais/uso terapêutico , Carcinoma Hepatocelular/epidemiologia , Egito/epidemiologia , Hepatite Viral Humana/epidemiologia , Humanos , Neoplasias Hepáticas/epidemiologia
6.
Hepatology ; 73(2): 520-532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32446278

RESUMO

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Assuntos
Técnicas de Cultura de Células/métodos , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Precursores de Proteínas/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Precursores de Proteínas/genética
7.
Sci Rep ; 10(1): 20763, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247161

RESUMO

Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1ß reduced the level of HBV RNA. However, the mechanism underlying IL-1ß-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1ß, suggesting that MCPIP1 is required for IL-1ß-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1ß.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Interações Hospedeiro-Patógeno , Interleucina-1beta/farmacologia , RNA Viral/química , Replicação Viral , Animais , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/virologia , Humanos , Camundongos , RNA Viral/efeitos dos fármacos , RNA Viral/metabolismo , Ribonucleases/genética , Fatores de Transcrição/genética
8.
Hepatol Res ; 50(3): 283-291, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756766

RESUMO

AIM: Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system. METHODS: We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model. RESULTS: By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3. CONCLUSIONS: We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.

9.
Front Microbiol ; 10: 2427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681253

RESUMO

Infection with hepatitis B virus (HBV) genotype (GT)-A has been reported to predispose patients to chronic infection. To explore the immune responses in infection with different HBV genotypes and clarify the genotype-dependent pathogenicity, a system mimicking the immune reaction during the early phase of HBV infection is indispensable. To this end, we established a coculture system with the replication-competent HBV molecular clone-transfected HepG2 cells and immortalized human natural killer (NK) cells, NK-92MI. Using this system, we evaluated HBV genotype dependency in NK functions and cell death of HBV positive HepG2 cells induced by NK cells or administration of tumor necrosis factor (TNF) by use of flow cytometry. After coculture with NK cells, we found that GT-A-positive HepG2 cells exhibited lower susceptibility to NK cell-induced cell death than GT-B- or GT-C-positive HepG2 cells. The NK responses of degranulation and cytokine production were not different among transfected HBV genotypes in cocultured cells. The expression levels of death receptors in HBV-transfected HepG2 cells were not different. In GT-A-positive cells, a similar low susceptibility was detected by the external administration of TNF, although relatively higher susceptibility was observed in GT-B- and GT-C-positive cells than in GT-A-positive cells. The activation of caspase signaling was revealed to be responsible for this genotype-dependent susceptibility. In conclusion, our results indicate that the HBV genotype does not influence the NK cell function itself but rather cell vulnerability through the TNF signal pathway. This observation may explain the high chronicity rate of HBV GT-A strains even in adult infections.

10.
Antiviral Res ; 158: 161-170, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118732

RESUMO

Nonstructural protein 5A (NS5A) inhibitors of hepatitis C virus (HCV) are known to have potent anti-viral effects; however, these inhibitors have limited activities on strains with resistant-associated substitutions or non-genotype 1 strains. To overcome these shortcomings, novel NS5A inhibitors have been developed and approved for clinical application. The aim of this study was to evaluate the anti-viral effect of novel NS5A inhibitors (derivatives of odalasvir) on HCV genotype 2 strains in a cell culture system. Chimeric JFH-1 viruses replaced with NS5A of genotypes 1 and 2 were utilized to assess the genotype-specific potencies of NS5A inhibitors. We also examined full-genome infectious clones of JFH-1, J6cc, and J8cc to confirm the effects of NS5A inhibitors on genotype 2 strains. All chimeric viruses were capable of replication at similar levels in cell culture. We examined the anti-viral effects of derivatives of the novel NS5A inhibitor and compared with the first-generation NS5A inhibitor, daclatasvir (DCV). These compounds inhibited replication of chimeric JFH-1 viruses with NS5A of genotypes 1 and 2 at low concentrations in comparison with DCV. The EC50 values of J6cc and J8cc to these compounds were more than 100-fold lower than that of DCV. By long-term culture in the presence of these compounds, we obtained highly resistant variants and identified the responsible substitutions. In conclusion, novel NS5A inhibitors displayed improved potency against HCV genotype 2 strains compared with DCV. However, the activity of these compounds was impaired by emerging resistance-associated substitutions.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Substituição de Aminoácidos , Antivirais/química , Carbamatos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Genótipo , Hepacivirus/genética , Humanos , Imidazóis/química , Imidazóis/farmacologia , Pirrolidinas , Alinhamento de Sequência , Valina/análogos & derivados , Replicação Viral/efeitos dos fármacos
11.
Oncotarget ; 9(5): 5627-5640, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464023

RESUMO

The number of amino acid substitutions in the interferon (IFN) sensitivity-determining region (ISDR) of hepatitis C virus (HCV) NS5A is a strong predictor for the outcome of IFN-based treatment. To assess the involvement of ISDR in the HCV life cycle and to clarify the molecular mechanisms influencing IFN susceptibility, we used recombinant JFH-1 viruses with NS5A of the genotype 1b Con1 strain (JFH1/5ACon1) and with NS5A ISDR containing 7 amino acid substitutions (JFH1/5ACon1/i-7mut), and compared the virus propagation and the induction of interferon-stimulated genes (ISGs). By transfecting RNAs of these strains into HuH-7-derived cells, we found that the efficiency of infectious virus production of JFH1/5ACon1/i-7mut was attenuated compared with JFH1/5ACon1. After transfecting full-length HCV RNA into HepaRG cells, the mRNA expression of ISGs was sufficiently induced by IFN treatment in JFH1/5ACon1/i-7mut-transfected but not in JFH1/5ACon1-transfected cells. These data suggested that the NS5A-mediated inhibition of ISG induction was deteriorated by amino acid substitutions in the ISDR. In conclusion, using recombinant JFH-1 viruses, we demonstrated that HCV NS5A is associated with infectious virus production and the inhibition of IFN signaling, and amino acid substitutions in the NS5A ISDR deteriorate these functions. These observations explain the strain-specific evasion of IFN signaling by HCV.

12.
Biochem Biophys Res Commun ; 443(3): 808-13, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24342612

RESUMO

Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection.


Assuntos
Vírus da Hepatite B/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Internalização do Vírus , Animais , Dimetil Sulfóxido/farmacologia , Células Hep G2 , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética , Tupaia , Internalização do Vírus/efeitos dos fármacos
13.
PLoS One ; 8(12): e83639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349538

RESUMO

Cytoplasmic viral RNA and DNA are recognized by RIG-I-like receptors and DNA sensors that include DAI, IFI16, DDX41, and cGAS. The RNA and DNA sensors evoke innate immune responses through the IPS-1 and STING adaptors. IPS-1 and STING activate TBK1 kinase. TBK1 is phosphorylated in its activation loop, leading to IRF3/7 activation and Type I interferon (IFN) production. IPS-1 and STING localize to the mitochondria and endoplasmic reticulum, respectively, whereas it is unclear where phosphorylated TBK1 is localized in response to cytoplasmic viral DNA. Here, we investigated phospho-TBK1 (p-TBK1) subcellular localization using a p-TBK1-specific antibody. Stimulation with vertebrate DNA by transfection increased p-TBK1 levels. Interestingly, stimulation-induced p-TBK1 exhibited mitochondrial localization in HeLa and HepG2 cells and colocalized with mitochondrial IPS-1 and MFN-1. Hepatitis B virus DNA stimulation or herpes simplex virus type-1 infection also induced p-TBK1 mitochondrial localization in HeLa cells, indicating that cytoplasmic viral DNA induces p-TBK1 mitochondrial localization in HeLa cells. In contrast, p-TBK1 did not show mitochondrial localization in RAW264.7, L929, or T-23 cells, and most of p-TBK1 colocalized with STING in response to cytoplasmic DNA in those mammalian cells, indicating cell type-specific localization of p-TBK1 in response to cytoplasmic viral DNA. A previous knockout study showed that mouse IPS-1 was dispensable for Type I IFN production in response to cytoplasmic DNA. However, we found that knockdown of IPS-1 markedly reduced p-TBK1 levels in HeLa cells. Taken together, our data elucidated the cell type-specific subcellular localization of p-TBK1 and a cell type-specific role of IPS-1 in TBK1 activation in response to cytoplasmic viral DNA.


Assuntos
DNA Viral/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/enzimologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , DNA Viral/genética , Células HeLa , Células Hep G2 , Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Camundongos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Tupaiidae
14.
Gastroenterology ; 145(3): 658-67.e11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684750

RESUMO

BACKGROUND & AIMS: A 3-dimensional (3D) culture system for immortalized human hepatocytes (HuS-E/2 cells) recently was shown to support the lifecycle of blood-borne hepatitis C virus (HCV). We used this system to identify proteins that are active during the HCV lifecycle under 3D culture conditions. METHODS: We compared gene expression profiles of HuS-E/2 cells cultured under 2-dimensional and 3D conditions. We identified signaling pathways that were activated differentially in the cells, and analyzed their functions in the HCV lifecycle using a recombinant HCV-producing cell-culture system, with small interfering RNAs and chemical reagents. We investigated the effects of anti-HCV reagents that altered these signaling pathways in mice with humanized livers (carrying human hepatocytes). RESULTS: Microarray analysis showed that cells cultured under 2-dimensional vs 3D conditions expressed different levels of messenger RNAs encoding prostaglandin synthases. Small interfering RNA-mediated knockdown of thromboxane A2 synthase (TXAS) and incubation of hepatocytes with a TXAS inhibitor showed that this enzyme is required for production of infectious HCV, but does not affect replication of the HCV genome or particle release. The TXAS inhibitor and a prostaglandin I2 receptor agonist, which has effects that are opposite those of thromboxane A2, reduced serum levels of HCV and inhibited the infection of human hepatocytes by blood-borne HCV in mice. CONCLUSIONS: An inhibitor of the prostaglandin synthase TXAS inhibits production of infectious HCV particles in cultured hepatocytes and HCV infection of hepatocytes in mice with humanized livers. It therefore might be therapeutic for HCV infection.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Hepacivirus/enzimologia , Hepatite C/prevenção & controle , Hepatócitos/virologia , Metacrilatos/uso terapêutico , Tromboxano-A Sintase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Sequência de Bases , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/efeitos dos fármacos , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Metacrilatos/farmacologia , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tromboxano-A Sintase/metabolismo , Proteínas Virais/metabolismo
15.
PLoS One ; 6(6): e21284, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731692

RESUMO

The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications.


Assuntos
Técnicas de Cultura de Células/métodos , Hepacivirus/fisiologia , Hepatócitos/citologia , Hepatócitos/virologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos CD/metabolismo , Linhagem Celular Transformada , Proliferação de Células , Efeito Citopatogênico Viral , Imunofluorescência , Regulação da Expressão Gênica , Genoma Viral/genética , Hepacivirus/genética , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Tetraspanina 28 , Transfecção , Replicação Viral/fisiologia
16.
Hepatology ; 50(3): 689-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19489071

RESUMO

UNLABELLED: We developed an in vitro system that can be used for the study of the life cycle of a wide variety of blood-borne hepatitis C viruses (HCV) from various patients using a three-dimensional hollow fiber culture system and an immortalized primary human hepatocyte (HuS-E/2) cell line. Unlike the conventional two-dimensional culture, this system not only enhanced the infectivity of blood-borne HCV but also supported its long-term proliferation and the production of infectious virus particles. Both sucrose gradient fractionation and electron microscopy examination showed that the produced virus-like particles are within a similar fraction and size range to those previously reported. Infection with different HCV strains showed strain-dependent different patterns of HCV proliferation and particle production. Fluctuation of virus proliferation and particle production was found during prolonged culture and was found to be associated with change in the major replicating virus strain. Induction of cellular apoptosis was only found when strains of HCV-2a genotype were used for infection. Interferon-alpha stimulation also varied among different strains of HCV-1b genotypes tested in this study. CONCLUSION: These results suggest that this in vitro infection system can reproduce strain-dependent events reflecting viral dynamics and virus-cell interactions at the early phase of blood-borne HCV infection, and that this system can allow the development of new anti-HCV strategies specific to various HCV strains.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Hepatócitos/virologia , Animais , Técnicas de Cultura de Células , Hepacivirus/patogenicidade , Hepatite C/sangue , Humanos , Vírion/metabolismo , Replicação Viral
17.
Biochem Biophys Res Commun ; 379(2): 330-4, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19103167

RESUMO

Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPARalpha) signaling. Furthermore, using PPARalpha agonists and antagonists, we also analyzed the effect of PPARalpha signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatócitos/virologia , Antivirais/uso terapêutico , Linhagem Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepacivirus/fisiologia , Hepatite C/genética , Hepatócitos/metabolismo , Humanos , Interferons/farmacologia , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA