Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ind Text ; 51(9): 1494-1523, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35923723

RESUMO

The global widespread of coronavirus disease 2019 (COVID-19) has caused shortage of medical face masks and led to developing of various types of cloth masks with different levels of protection and comfort to meet the market demands. Breathing comfort is a significant aspect that should be considered during the design of cloth masks along with the filtration efficiency; otherwise, the wearer will feel suffocated. In this work, different types of cotton and polyester knitted fabrics blended with spandex yarns were produced and treated with silver nanoparticles to be used as antiviral cloth masks. Scanning electron microscope, transmission electron microscope, and EDX were used to characterize the silver nanoparticles (AgNPs). Antiviral activity was assessed against SARS-CoV-2 coronavirus as well. The influence of using different fabric materials, number of layers, and hybrid layers on their air permeability and breathability were investigated to evaluate the comfortability of the cloth masks. Physiological impacts of wearing the cloth masks were evaluated by measuring oxygen saturation of hemoglobin and heart rate of the wearers while doing various activities. The results indicated that AgNPs have low cytotoxicity and considerable efficiency in inhibition of SARS-CoV-2. Adding spandex yarns with different count and ratios reduced the porosity and air permeability of the fabrics. Moreover, the combination of three hybrid layers' mask made of polyester fabric in the outer layer with 100% cotton fabric in the inner layer showed high comfortability associated with high air permeability and breathability. Also, wearing these masks while doing activities showed no significant effect on blood oxygen saturation and heart rate of the wearers.

2.
Int J Biol Macromol ; 181: 990-1002, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33864870

RESUMO

Coronaviruses (CoV) are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). We succeeded in preparing disinfectant cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles to be used for prevention of contamination and transmission of several pathogenic viruses and microbes to human in critical areas such as hospitals and healthcare centers especially coronavirus. In this work, the antimicrobial and antiviral activities of silver nanoparticles (AgNPs) prepared with four different techniques were investigated for the utilization as a disinfectant for cellulose-based wipes. These four methods are namely; 1) trisodium citrate with cotton yarn as a reducing agent, 2) preparing AgNP's using aqueous solution of PVA in the presence of glucose, 3) trisodium citrate with cotton fabric as a reducing agent, and 4) photochemical reaction of polyacrylic acid and silver nitrate solution. Polyester/viscose blended spunlace nonwoven fabrics as cellulose based fabrics were treated with the prepared silver nanoparticles to be used as surfaces disinfection wipes. The properties of the nonwoven fabrics were examined including thickness, tensile strength in dry and wet conditions in both machine direction (MD) and cross-machine direction (CMD), bursting strength, air permeability, water permeability and surface wettability. Characterization of the AgNPs was carried out in terms of UV-VIS spectroscopy, TEM, SEM, and Zeta potential analysis. The assessment of AgNPs active solutions for antimicrobial and antiviral activities was evaluated. The results obtained from the analyses of the AgNPs samples prepared with different techniques showed good uniformity and stability of the particles, as well uniform coating of the AgNPs on the fibers. Additionally, there is a significant effect of the AgNPs preparation method on their disinfectant performance that proved its effectiveness against coronavirus (MERS-CoV), S. aureus and B. subtilis as Gram-positive bacteria, E. coli and P. mirabilis as Gram-negative bacteria, A. niger and C. albicans fungi.


Assuntos
COVID-19/prevenção & controle , Celulose/química , Coronavirus/efeitos dos fármacos , Desinfetantes/química , Nanopartículas Metálicas/química , SARS-CoV-2/efeitos dos fármacos , Prata/química , Resinas Acrílicas/química , Antibacterianos/química , Anti-Infecciosos/química , Antivirais/química , Citratos/química , Fibra de Algodão , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Testes de Sensibilidade Microbiana , Nitrato de Prata/química
3.
Int J Biol Macromol ; 181: 905-918, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33872612

RESUMO

Tissue-engineering has become the best alternative solution for replacing the damaged tissues. However, the cost of scaffold materials is still a big challenge, so the development of cost-effective scaffolds is highly encouraged. In this research, different types of cotton textile-scaffolds as a cellulosic material were developed to be utilized as a substrate for cells proliferation. They were loaded with bioactive glass (BG) doped with silver nanoparticles (AgNPs). The effect of the loaded materials on the physicochemical and mechanical characteristics of the cellulosic textile scaffolds was investigated by means of FTIR, contact angle, physical and mechanical properties of the cotton fabrics, in addition to assessing their antimicrobial activity. Moreover, the biomineralization was evaluated after soaking in Simulated Body Fluid (SBF) using ICP and SEM accessorized with EDX. Cells proliferation capacities of the developed cellulosic woven-scaffolds were assessed against MG63 cell line at different incubation times. The physicochemical and mechanical features of these fabrics demonstrated a positive influence for the existence of BG impregnation, especially those doped with AgNPs. The antimicrobial features were also affirmed for the cellulosic scaffolds. More pronounced influence was observed on the biomineralization of the scaffold impregnated with BG doped with 0.5% Ag. The percentages of proliferated cells were very close to negative control (100% ± 10). This approach offers a novel and affordable alternative cellulosic woven-scaffolds for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Celulose/farmacologia , Fibra de Algodão , Nanopartículas Metálicas/química , Engenharia Tecidual , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biomineralização , Líquidos Corporais/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Celulose/química , Vidro/química , Humanos , Prata/química , Têxteis , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA