Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 327: 138479, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965530

RESUMO

Salinization causes the degradation of the soil and threatening the global food security but the application of essential micronutrients like zinc (Zn), improve the plant growth by stabilizing the plant cell and root development. Keeping in view the above-mentioned scenario, an experiment was conducted to compare the efficiency of conventional Zn fertilizers like zinc sulphate (ZnSO4), zinc ethylene diamine tetra acetic acid (Zn-EDTA) and advance nano Zn fertilizers such as zinc sulphate nanoparticles (ZnSO4NPs), and zinc oxide nanoparticles (ZnONPs) (applied at the rate of 5 and 10 mg/kg) in saline-sodic soil. Results revealed that the maximum plant height (67%), spike length (72%), root length (162%), number of tillers (71%), paddy weight (100%), shoot dry weight (158%), and root dry weight (119%) was found in ZnSO4NPs applied at the rate of 10 mg/kg (ZnSO4NPs-10) as compared to salt-affected control (SAC). Similarly, the plants physiological attributes like chlorophyll contents (91%), photosynthesis rate (113%), transpiration rate (106%), stomatal conductance (56%) and internal CO2 (11%) were increased by the application of ZnSO4NPs-10, as compared to SAC. The maximum Zn concentration in root (153%), shoot (205%) and paddy (167%) found in ZnSO4NPs-10, as compared to control. In the body of rice plants, other nutrients like phosphorus and potassium were also increased by the application of ZnSO4NPs-10 and soil chemical attributes such as sodium and sodium adsorption ratio were decreased. The current experiment concluded that the application of ZnSO4NPs at the rate of 10 mg/kg in salt-affected paddy soil increased the growth, physiology, up take of essential nutrients and yield of rice by balancing the cationic ratio under salt stress.


Assuntos
Oryza , Zinco , Zinco/metabolismo , Oryza/metabolismo , Solo/química , Fertilizantes , Sulfato de Zinco/farmacologia , Sulfato de Zinco/metabolismo , Estresse Salino , Sódio
2.
Front Plant Sci ; 13: 925548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325567

RESUMO

Agricultural production is under threat due to climate change in food insecure regions, especially in Asian countries. Various climate-driven extremes, i.e., drought, heat waves, erratic and intense rainfall patterns, storms, floods, and emerging insect pests have adversely affected the livelihood of the farmers. Future climatic predictions showed a significant increase in temperature, and erratic rainfall with higher intensity while variability exists in climatic patterns for climate extremes prediction. For mid-century (2040-2069), it is projected that there will be a rise of 2.8°C in maximum temperature and a 2.2°C in minimum temperature in Pakistan. To respond to the adverse effects of climate change scenarios, there is a need to optimize the climate-smart and resilient agricultural practices and technology for sustainable productivity. Therefore, a case study was carried out to quantify climate change effects on rice and wheat crops and to develop adaptation strategies for the rice-wheat cropping system during the mid-century (2040-2069) as these two crops have significant contributions to food production. For the quantification of adverse impacts of climate change in farmer fields, a multidisciplinary approach consisted of five climate models (GCMs), two crop models (DSSAT and APSIM) and an economic model [Trade-off Analysis, Minimum Data Model Approach (TOAMD)] was used in this case study. DSSAT predicted that there would be a yield reduction of 15.2% in rice and 14.1% in wheat and APSIM showed that there would be a yield reduction of 17.2% in rice and 12% in wheat. Adaptation technology, by modification in crop management like sowing time and density, nitrogen, and irrigation application have the potential to enhance the overall productivity and profitability of the rice-wheat cropping system under climate change scenarios. Moreover, this paper reviews current literature regarding adverse climate change impacts on agricultural productivity, associated main issues, challenges, and opportunities for sustainable productivity of agriculture to ensure food security in Asia. Flowing opportunities such as altering sowing time and planting density of crops, crop rotation with legumes, agroforestry, mixed livestock systems, climate resilient plants, livestock and fish breeds, farming of monogastric livestock, early warning systems and decision support systems, carbon sequestration, climate, water, energy, and soil smart technologies, and promotion of biodiversity have the potential to reduce the negative effects of climate change.

3.
Front Plant Sci ; 13: 989504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299792

RESUMO

The increasing contamination of soil with arsenic (As), and salinity has become a menace to food security and human health. The current study investigates the comparative efficacy of plain biochar (BC), and silicon-nanoparticles doped biochar (SBC) for ameliorating the As and salinity-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) and associated human health risks. Quinoa was grown on normal and saline soils (ECe 12.4 dS m-1) contaminated with As (0, 20 mg kg-1) and supplemented with 1% of BC or SBC. The results demonstrated that plant growth, grain yield, chlorophyll contents, and stomatal conductance of quinoa were decreased by 62, 44, 48, and 66%, respectively under the blended stress of As and salinity as compared to control. Contrary to this, the addition of BC to As-contaminated saline soil caused a 31 and 25% increase in plant biomass and grain yield. However, these attributes were increased by 45 and 38% with the addition of SBC. The H2O2 and TBARS contents were enhanced by 5 and 10-fold, respectively under the combined stress of As and salinity. The SBC proved to be more efficient than BC in decreasing oxidative stress through overexpressing of antioxidant enzymes. The activities of superoxide dismutase, peroxidase, and catalase were enhanced by 5.4, 4.6, and 11-fold with the addition of SBC in As-contaminated saline soil. Contamination of grains by As revealed both the non-carcinogenic and carcinogenic risks to human health, however, these effects were minimized with the addition of SBC. As accumulation in grains was decreased by 65-fold and 25-fold, respectively for BC and SBC in addition to As-contaminated saline soil. The addition of SBC to saline soils contaminated with As for quinoa cultivation is an effective approach for decreasing the food chain contamination and improving food security. However, more research is warranted for the field evaluation of the effectiveness of SBC in abating As uptake in other food crops cultivated on As polluted normal and salt-affected soils.

4.
Front Plant Sci ; 13: 948736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979075

RESUMO

The development of food and forage crops that flourish under saline conditions may be a prospective avenue for mitigating the impacts of climate change, both allowing biomass production under conditions of water-deficit and potentially expanding land-use to hitherto non-arable zones. Here, we examine responses of the native halophytic shrub Atriplex leucoclada to salt and drought stress using a factorial design, with four levels of salinity and four drought intensities under the arid conditions. A. leucoclada plants exhibited morphological and physiological adaptation to salt and water stress which had little effect on survival or growth. Under low salinity stress, water stress decreased the root length of A. leucoclada; in contrast, under highly saline conditions root length increased. Plant tissue total nitrogen, phosphorus and potassium content decreased with increasing water stress under low salinity. As salt stress increased, detrimental effects of water deficit diminished. We found that both salt and water stress had increased Na+ and Cl- uptake, with both stresses having an additive and beneficial role in increasing ABA and proline content. We conclude that A. leucoclada accumulates high salt concentrations in its cellular vacuoles as a salinity resistance mechanism; this salt accumulation then becomes conducive to mitigation of water stress. Application of these mechanisms to other crops may improve tolerance and producitivity under salt and water stress, potentially improving food security.

5.
Chemosphere ; 304: 135262, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35688199

RESUMO

Extensive usage of heavy metals (HMs) in chemical reactions and processes eventually contaminate the environmental segments and is currently a major environmental concern. HMs such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr) and nickel (Ni) are considered the most harmful pollutants as they have adequate potential of bioaccumulation. The current research was carried out to assess the HMs toxicity of textile and tannery wastewater and effect of acetic acid (AA) on phytoextraction of HMs by duckweed (Lemna minor L.) in a hydroponic system. Plants were treated with different treatments having different hydroponic concentrations of AA (5 and 10 mM) and textile and tannery effluents, where these two effuents were equally mixed and then diluted with good quality water with different ratios (25, 50, 75, and 100%) along with three replications of each treatment. Results were recorded for growth attributes, chlorophylls, antioxidant enzymes, electrolytic leakage, reactive oxygen species and HMs accumulation in plants. HMs accumulation disrupts the growth parameters, chlorophyll contents and carotenoids contents along with increased activities of antioxidant enzyme such as catalases (CAT), superoxide dismutase (SOD), peroxidases (POD) and ascorbate peroxidase (APX). Addition of AA in the hydroponic experimental system significantly improves the antioxidant defense mechanism and alleviated the HM induced toxicity in plants. Cr, Cd, Pb, Cu and Ni concentrations were maximally increased up to 116 & 422%, 106 & 416%, 72 & 351%, 76 & 346%, and 41 & 328% respectively under AA (10 mM) application. The results revealed that duckweed can be applied as potential phyto-remedy to treat industrial wastewater.


Assuntos
Araceae , Metais Pesados , Poluentes do Solo , Ácido Acético , Antioxidantes/farmacologia , Biodegradação Ambiental , Cádmio/toxicidade , Clorofila/análise , Cromo/análise , Chumbo/farmacologia , Metais Pesados/toxicidade , Poluentes do Solo/análise , Águas Residuárias
6.
Saudi Pharm J ; 28(5): 574-581, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435138

RESUMO

Renin-angiotensin system exerted deleterious effects on learning and cognitive functions through different mechanisms. The present study has been designed to evaluate the protective effect of perindopril and azilsartan as monotherapy or in combination on aluminum chloride (AlCl3) induced neurobehavioral and pathological changes in Alzheimeric rats. Male Wistar rats were divided into nine groups (n = 6); negative control, AlCl3 treated, vehicle, AlCl3 and Azilsartan (3.5 mg/kg, 7 mg/kg) co-treated, AlCl3 and perindopril (0.5 mg/kg, 1 mg/kg) co-treated, AlCl3 and (Azilsartan 3.5 mg/kg + perindopril 0.5 mg/kg), and AlCl3 and (Azilsartan 7 mg/kg + perindopril 1 mg/kg), all groups were treated for consecutive 60 days. Then, memory function was evaluated by the Y- maze test. Amyloid Peptide - 42 (Aß-42), Acetylcholinesterase (AChE), Malondialdehyde (MDA), Tumor necrosis factor (TNF-α) and Nitric Oxide (NO) levels in the hippocampus were assessed with (ELISA) kits. The histopathological studies of the hippocampal dentate gyrus (DG) and Cornu Ammonis-3 (CA3) were also performed. Oral administration of either azilsartan and perindopril alone or in combined for 60 days have shown; improvement of cognitive function, significant reduction in the hippocampal levels of Aß-42, Acetylcholinesterase, Malondialdehyde (MDA), Tumor necrosis factor (TNF-α) and reserved most of histopathological changes in dentate gyrus (DG) and Cornu Ammonis-3 (CA3) that mediated by Alcl3. Our behavioral, biochemical, and histopathological studies indicate that perindopril and azilsartan have neuroprotective effects on the AD model of rats induced by AlCl3, suggesting that perindopril and azilsartan may be a candidate drugs for the treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA