Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 117(2): 252-265, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36811563

RESUMO

BACKGROUND: Dietary components that impact the gut microbiota may beneficially affect cardiometabolic health, possibly by altered bile acid metabolism. However, impacts of these foods on postprandial bile acids, gut microbiota, and cardiometabolic risk markers are unclear. OBJECTIVES: The aim of this study was to determine the chronic effects of probiotics, oats, and apples on postprandial bile acids, gut microbiota, and cardiometabolic health biomarkers. METHODS: Using an acute within chronic parallel design, 61 volunteers (mean ± SD: age 52 ± 12 y; BMI 24.8 ± 3.4 kg/m2) were randomly assigned to consume 40 g cornflakes (control), 40 g oats or 2 Renetta Canada apples each with 2 placebo capsules per day or 40 g cornflakes with 2 Lactobacillus reuteri capsules (>5 × 109 CFU) per day, for 8 wk. Fasting and postprandial serum/plasma bile acids and cardiometabolic health biomarkers, fecal bile acids, and gut microbiota composition were determined. RESULTS: At week 0, oats and apples significantly decreased postprandial serum insulin [area under the curve (AUC): 25.6 (17.4, 33.8) and 23.4 (15.4, 31.4) vs. 42.0 (33.7, 50.2) pmol/L × min and incremental AUC (iAUC): 17.8 (11.6, 24.0) and 13.7 (7.7, 19.8) vs. 29.6 (23.3, 35.8) pmol/L × min] and C-peptide responses [AUC: 599 (514, 684) and 550 (467, 632) vs. 750 (665, 835) ng/mL × min], whereas non-esterified fatty acids were increased [AUC 135 (117, 153) vs. 86.3 (67.9, 105) and iAUC 96.2 (78.8, 114) vs. 60 (42.1, 77.9) mmol/L × min] after the apples vs. control (P ≤ 0.05). Postprandial unconjugated [AUC: predicted means (95% CI) 1469 (1101, 1837) vs. 363 (-28, 754) µmol/L × min and iAUC: 923 (682, 1165) vs. 22.0 (-235, 279) µmol/L × min)] and hydrophobic [iAUC: 1210 (911, 1510) vs. 487 (168, 806) µmol/L × min] bile acid responses were increased after 8 wk probiotic intervention vs. control (P ≤ 0.049). None of the interventions modulated the gut microbiota. CONCLUSIONS: These results support beneficial effects of apples and oats on postprandial glycemia and the ability of the probiotic Lactobacillus reuteri to modulate postprandial plasma bile acid profiles compared with control (cornflakes), with no relationship evident between circulating bile acids and cardiometabolic health biomarkers.


Assuntos
Doenças Cardiovasculares , Malus , Probióticos , Humanos , Adulto , Pessoa de Meia-Idade , Avena/metabolismo , Ácidos e Sais Biliares , Biomarcadores , Doenças Cardiovasculares/prevenção & controle , Período Pós-Prandial/fisiologia , Glicemia/metabolismo , Insulina
2.
Nutr Res Rev ; 35(2): 161-180, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33926590

RESUMO

Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Probióticos , Animais , Humanos , Prebióticos , Microbioma Gastrointestinal/fisiologia , Ácidos e Sais Biliares , Polifenóis/farmacologia , Colesterol/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Lipídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA