Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37760568

RESUMO

Deregulation of the MYC family of transcription factors c-MYC (encoded by MYC), MYCN, and MYCL is prevalent in most human cancers, with an impact on tumor initiation and progression, as well as response to therapy. In neuroblastoma (NB), amplification of the MYCN oncogene and over-expression of MYC characterize approximately 40% and 10% of all high-risk NB cases, respectively. However, the mechanism and stage of neural crest development in which MYCN and c-MYC contribute to the onset and/or progression of NB are not yet fully understood. Here, we hypothesized that subtle differences in the expression of MYCN and/or c-MYC targets could more accurately stratify NB patients in different risk groups rather than using the expression of either MYC gene alone. We employed an integrative approach using the transcriptome of 498 NB patients from the SEQC cohort and previously defined c-MYC and MYCN target genes to model a multigene transcriptional risk score. Our findings demonstrate that defined sets of c-MYC and MYCN targets with significant prognostic value, effectively stratify NB patients into different groups with varying overall survival probabilities. In particular, patients exhibiting a high-risk signature score present unfavorable clinical parameters, including increased clinical risk, higher INSS stage, MYCN amplification, and disease progression. Notably, target genes with prognostic value differ between c-MYC and MYCN, exhibiting distinct expression patterns in the developing sympathoadrenal system. Genes associated with poor outcomes are mainly found in sympathoblasts rather than in chromaffin cells during the sympathoadrenal development.

2.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175848

RESUMO

Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.


Assuntos
Secretases da Proteína Precursora do Amiloide , Neuroblastoma , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Transdução de Sinais/genética , Linhagem Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Amplificação de Genes
4.
Nat Commun ; 13(1): 5093, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064840

RESUMO

The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn't well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Tuberculose , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Camundongos , Linfócitos T/imunologia , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/prevenção & controle , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia
5.
Cancer Res Commun ; 2(2): 110-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-36860495

RESUMO

MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance: While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular , Ligação Proteica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc
6.
Cancer Res Commun ; 2(3): 182-201, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36874405

RESUMO

Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells become G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregulates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer. Significance: Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby hampering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.


Assuntos
Neuroblastoma , Animais , Camundongos , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Proliferação de Células , Ciclo Celular
7.
Methods Mol Biol ; 2318: 241-254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019294

RESUMO

Cellular senescence plays a role in several physiological processes including aging, embryonic development, tissue remodeling, and wound healing and is considered one of the main barriers against tumor development. Studies of normal and tumor cells both in culture and in vivo suggest that MYC plays an important role in regulating senescence, thereby contributing to tumor development. We have previously described different common methods to measure senescence in cell cultures and in tissues. Unfortunately, there is no unique marker that unambiguously defines a senescent state, and it is therefore necessary to combine measurements of several different markers in order to assure the correct identification of senescent cells. Here we describe protocols for simultaneous detection of multiple senescence markers in situ, a quantitative fluorogenic method to measure senescence-associated ß-galactosidase activity (SA-ß-gal), and a new method to detect senescent cells based on the Sudan Black B (SBB) analogue GL13, which is applicable to formalin-fixed paraffin-embedded tissues. The application of these methods in various systems will hopefully shed further light on the role of MYC in regulation of senescence, and how that impacts normal physiological processes as well as diseases and in particular cancer development.


Assuntos
Senescência Celular/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Coloração e Rotulagem/métodos , Envelhecimento , Compostos Azo/química , Biomarcadores , Células Cultivadas , Senescência Celular/genética , DNA/genética , Corantes Fluorescentes/química , Genes myc/genética , Genes myc/fisiologia , Humanos , Naftalenos/química , Proteínas Proto-Oncogênicas c-myc/genética , beta-Galactosidase/análise , beta-Galactosidase/metabolismo
8.
Cell Cycle ; 20(1): 23-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356836

RESUMO

Deregulated expression of the MYC oncogene is a frequent event during tumorigenesis and generally correlates with aggressive disease and poor prognosis. While MYC is a potent inducer of apoptosis, it often suppresses cellular senescence, which together with apoptosis is an important barrier against tumor development. For this latter function, MYC is dependent on cyclin-dependent kinase 2 (CDK2). Here, we utilized a MYC/BCL-XL-driven mouse model of acute myeloblastic leukemia (AML) to investigate whether pharmacological inhibition of CDK2 can inhibit MYC-driven tumorigenesis through induction of senescence. Purified mouse hematopoietic stem cells transduced with MYC and BCL-XL were transplanted into lethally irradiated mice, leading to the development of massive leukemia and subsequent death 15-17 days after transplantation. Upon disease onset, mice were treated with the selective CDK2 inhibitor CVT2584 or vehicle either by daily intraperitoneal injections or continuous delivery via mini-pumps. CVT2584 treatment delayed disease onset and moderately but significantly improved survival of mice. Flow cytometry revealed a significant decrease in tumor load in the spleen, liver and bone marrow of CVT2584-treated compared to vehicle-treated mice. This was correlated with induced senescence evidenced by reduced cell proliferation, increased senescence-associated ß-galactosidase activity and heterochromatin foci, expression of p19ARF and p21CIP1, and reduced phosphorylation (activation) of pRb, while very few apoptotic cells were observed. In addition, phosphorylation of MYC at Ser-62 was decreased. In summary, inhibition of CDK2 delayed MYC/BCL-XL-driven AML linked to senescence induction. Our results suggest that CDK2 is a promising target for pro-senescence cancer therapy, in particular for MYC-driven tumors, including leukemia.


Assuntos
Senescência Celular/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Feminino , Humanos , Leucemia/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação/genética
9.
Epigenomes ; 2(3)2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30761216

RESUMO

The enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of the polycomb repressive complex 2 (PRC2) that exerts important functions during normal development as well as disease. PRC2 through EZH2 tri-methylates histone H3 lysine tail residue 27 (H3K27me3), a modification associated with repression of gene expression programs related to stem cell self-renewal, cell cycle, cell differentiation, and cellular transformation. EZH2 is deregulated and subjected to gain of function or loss of function mutations, and hence functions as an oncogene or tumor suppressor gene in a context-dependent manner. The development of highly selective inhibitors against the histone methyltransferase activity of EZH2 has also contributed to insight into the role of EZH2 and PRC2 in tumorigenesis, and their potential as therapeutic targets in cancer. EZH2 can function as an oncogene in multiple myeloma (MM) by repressing tumor suppressor genes that control apoptosis, cell cycle control and adhesion properties. Taken together these findings have raised the possibility that EZH2 inhibitors could be a useful therapeutic modality in MM alone or in combination with other targeted agents in MM. Therefore, we review the current knowledge on the regulation of EZH2 and its biological impact in MM, the anti-myeloma activity of EZH2 inhibitors and their potential as a targeted therapy in MM.

10.
Semin Cancer Biol ; 51: 101-115, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28962927

RESUMO

Multiple myeloma (MM) is a tumor of antibody producing plasmablasts/plasma cells that resides within the bone marrow (BM). In addition to the well-established role of genetic lesions and tumor-microenvironment interactions in the development of MM, deregulated epigenetic mechanisms are emerging as important in MM pathogenesis. Recently, MM sequencing and expression projects have revealed that mutations and copy number variations as well as deregulation in the expression of epigenetic modifiers are characteristic features of MM. In the past decade, several studies have suggested epigenetic mechanisms via DNA methylation, histone modifications and non-coding RNAs as important contributing factors in MM with impacts on disease initiation, progression, clonal heterogeneity and response to treatment. Herein we review the present view and knowledge that has accumulated over the past decades on the role of epigenetics in MM, with focus on the interplay between epigenetic mechanisms and the potential use of epigenetic inhibitors as future treatment modalities for MM.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Animais , Humanos , Microambiente Tumoral
11.
Oncotarget ; 8(61): 103731-103743, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262596

RESUMO

Multiple myeloma (MM) is a tumor of plasmablasts/plasma cells (PCs) characterized by the expansion of malignant PCs with complex genetic aberrations in the bone marrow (BM). Recent reports, by us and others, have highlighted the polycomb group (PcG) proteins as potential targets for therapy in MM. The PcG protein BMI-1 of the polycomb repressive complex 1 (PRC1) has been reported to be overexpressed and to possess oncogenic functions in MM. Herein, we report on the anti-myeloma effects of the BMI-1 inhibitor PTC-209 and demonstrate that PTC-209 is a potent anti-myeloma agent in vitro using MM cell lines and primary MM cells. We show that PTC-209 reduces the viability of MM cells via induction of apoptosis and reveal that the anti-MM actions of PTC-209 are mediated by on-target effects i.e. downregulation of BMI-1 protein and the associated repressive histone mark H2AK119ub, leaving other PRC1 subunits such as CBX-7 and the catalytic subunit RING1B unaffected. Importantly, we demonstrate that PTC-209 exhibits synergistic and additive anti-myeloma activity when combined with other epigenetic inhibitors targeting EZH2 and BET bromodomains. Collectively, these data qualify BMI-1 as a candidate for targeted therapy in MM alone or in combinations with epigenetic inhibitors directed to PRC2/EZH2 or BET bromodomains.

12.
RNA Dis ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28664185

RESUMO

We have previously presented the histone methyltransferase enhancer of zeste homolog 2 (EZH2) of the polycomb repressive complex 2 (PRC2) as a potential therapeutic target in Multiple Myeloma (MM). In a recent article in Oncotarget by Alzrigat. et al. 2017, we have reported on the novel finding that EZH2 inhibition using the highly selective inhibitor of EZH2 enzymatic activity, UNC1999, reactivated the expression of microRNA genes previously reported to be underexpressed in MM. Among these, we have identified miR-125a-3p and miR-320c as potential tumor suppressor microRNAs as they were predicted to target MM-associated oncogenes; IRF-4, XBP-1 and BLIMP-1. We also found EZH2 inhibition to reactivate the expression of miR-494, a previously reported regulator of the c-MYC oncogene. In addition, we could report that EZH2 inhibition downregulated the expression of a few well described oncogenic microRNAs in MM. The data from our recent article are here highlighted as it shed a new light onto the oncogenic function of the PRC2 in MM. These data further strengthen the notion that the PRC2 complex may be of potential therapeutic interest.

13.
Oncotarget ; 8(6): 10213-10224, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28052011

RESUMO

Multiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite the fact that current treatment strategies have improved patients' median survival time, MM remains incurable. Epigenetic aberrations are emerging as important players in tumorigenesis making them attractive targets for therapy in cancer including MM. Recently, we suggested the polycomb repressive complex 2 (PRC2) as a common denominator of gene silencing in MM and presented the PRC2 enzymatic subunit enhancer of zeste homolog 2 (EZH2) as a potential therapeutic target in MM. Here we further dissect the anti-myeloma mechanisms mediated by EZH2 inhibition and show that pharmacological inhibition of EZH2 reduces the expression of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1 and c-MYC. We show that EZH2 inhibition reactivates the expression of microRNAs with tumor suppressor functions predicted to target MM-associated oncogenes; primarily miR-125a-3p and miR-320c. ChIP analysis reveals that miR-125a-3p and miR-320c are targets of EZH2 and H3K27me3 in MM cell lines and primary cells. Our results further highlight that polycomb-mediated silencing in MM includes microRNAs with tumor suppressor activity. This novel role strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.


Assuntos
Antineoplásicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Genes Supressores de Tumor , MicroRNAs/genética , Mieloma Múltiplo/tratamento farmacológico , Oncogenes , Piridonas/farmacologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , MicroRNAs/metabolismo , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Células Tumorais Cultivadas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
14.
Oncotarget ; 7(6): 6809-23, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26755663

RESUMO

Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells. Using this epigenome profile, we found increased silencing of H3K27me3 targets in MM patients at advanced stages of the disease, and the expression pattern of H3K27me3-marked genes correlated with poor patient survival. We also demonstrated that pharmacological inhibition of EZH2 had anti-myeloma effects in both MM cell lines and CD138+ MM patient cells. In addition, EZH2 inhibition decreased the global H3K27 methylation and induced apoptosis. Taken together, these data suggest an important role for the Polycomb repressive complex 2 (PRC2) in MM, and highlights the PRC2 component EZH2 as a potential therapeutic target in MM.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteínas do Grupo Polycomb/genética , Cromatina/metabolismo , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Perfilação da Expressão Gênica , Histonas/genética , Humanos , Lisina/metabolismo , Metilação , Terapia de Alvo Molecular , Mieloma Múltiplo/metabolismo , Proteínas do Grupo Polycomb/metabolismo
15.
J Cell Biol ; 199(1): 49-63, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23007646

RESUMO

Promyelocytic leukemia (PML) nuclear bodies selectively associate with transcriptionally active genomic regions, including the gene-rich major histocompatibility (MHC) locus. In this paper, we have explored potential links between PML and interferon (IFN)-γ-induced MHC class II expression. IFN-γ induced a substantial increase in the spatial proximity between PML bodies and the MHC class II gene cluster in different human cell types. Knockdown experiments show that PML is required for efficient IFN-γ-induced MHC II gene transcription through regulation of the class II transactivator (CIITA). PML mediates this function through protection of CIITA from proteasomal degradation. We also show that PML isoform II specifically forms a stable complex with CIITA at PML bodies. These observations establish PML as a coregulator of IFN-γ-induced MHC class II expression.


Assuntos
Genes MHC da Classe II/genética , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA