Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Genet Genomics ; 299(1): 49, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704518

RESUMO

The main objective of this study was to determine whether the common Y-haplogroups were be associated with the risk of developing severe COVID-19 in Spanish male. We studied 479 patients who required hospitalization due to COVID-19 and 285 population controls from the region of Asturias (northern Spain), They were genotyped for several polymorphisms that define the common European Y-haplogroups. We compared the frequencies between patients and controls aged ≤ 65 and >65 years. There were no different haplogroup frequencies between the two age groups of controls. Haplogroup R1b was less common in patients aged ≤65 years. Haplogroup I was more common in the two patient´s groups compared to controls (p = 0.02). Haplogroup R1b was significantly more frequent among hypertensive patients, without difference between the hypertensive and normotensive controls. This suggested that R1b could increase the risk for severe COVID-19 among male with pre-existing hypertension. In conclusion, we described the Y-haplogroup structure among Asturians. We found an increased risk of severe COVID-19 among haplogroup I carriers, and a significantly higher frequency of R1b among hypertensive patients. These results indicate that Y-chromosome variants could serve as markers to define the risk of developing a severe form of COVID-19.


Assuntos
COVID-19 , Cromossomos Humanos Y , Haplótipos , Hipertensão , SARS-CoV-2 , Humanos , Masculino , COVID-19/genética , COVID-19/epidemiologia , Espanha/epidemiologia , Haplótipos/genética , Idoso , Pessoa de Meia-Idade , SARS-CoV-2/genética , Cromossomos Humanos Y/genética , Hipertensão/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Adulto , Feminino
2.
Immunogenetics ; 76(3): 213-217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602517

RESUMO

There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.


Assuntos
COVID-19 , Imunoglobulina G , Receptores de IgG , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/genética , COVID-19/imunologia , COVID-19/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , SARS-CoV-2/imunologia , Receptores de IgG/genética , Alótipos Gm de Imunoglobulina/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Adulto , Genes de Imunoglobulinas , Alelos
3.
Am J Respir Crit Care Med ; 208(3): 256-269, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154608

RESUMO

Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Células Estromais
4.
Immunogenetics ; 75(2): 91-98, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36434151

RESUMO

MDA5, encoded by the IFIH1gene, is a cytoplasmic sensor of viral RNAs that triggers interferon (IFN) antiviral responses. Common and rare IFIH1 variants have been associated with the risk of type 1 diabetes and other immune-mediated disorders, and with the outcome of viral diseases. Variants associated with reduced IFN expression would increase the risk for severe viral disease. The MDA5/IFN pathway would play a critical role in the response to SARS-CoV-2 infection mediating the extent and severity of COVID-19. Here, we genotyped a cohort of 477 patients with critical ICU COVID-19 (109 death) for three IFIH1 functional variants: rs1990760 (p.Ala946Thr), rs35337543 (splicing variant, intron 8 + 1G > C), and rs35744605 (p.Glu627Stop). The main finding of our study was a significant increased frequency of rs1990760 C-carriers in early-onset patients (< 65 years) (p = 0.01; OR = 1.64, 95%CI = 1.18-2.43). This variant was also increased in critical vs. no-ICU patients and in critical vs. asymptomatic controls. The rs35744605 C variant was associated with increased blood IL6 levels at ICU admission. The rare rs35337543 splicing variant showed a trend toward protection from early-onset critical COVID-19. In conclusion, IFIH1 variants associated with reduced gene expression and lower IFN response might contribute to develop critical COVID-19 with an age-dependent effect.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , COVID-19/genética , SARS-CoV-2 , Diabetes Mellitus Tipo 1/genética
5.
Eur Respir J ; 61(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104291

RESUMO

BACKGROUND: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit. METHODS: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings. RESULTS: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results. CONCLUSIONS: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Estado Terminal , Unidades de Terapia Intensiva
6.
Mol Imaging Biol ; 25(2): 413-422, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36167904

RESUMO

PURPOSE: Clinical ventilation studies are primarily performed with computerized tomography (CT) and more often with single-photon emission Computerized tomography (SPECT) using radiolabelled aerosols, both presenting certain limitations. Here, we investigate the use of the radiofluorinated gas [18F]SF6 as a positron emission tomography (PET) ventilation marker in an animal model of impaired lung ventilation. PROCEDURES: Sprague-Dawley rats (n = 15) were randomly assigned to spontaneous ventilation (sham group), endotracheal administration of phosphate-buffered saline (PBS group), or endotracheal administration of lipopolysaccharide (LPS group). PET-[18F]SF6 images (10-min acquisition) were acquired at t = 48 h after LPS or PBS administration under mechanical ventilation. CT images were acquired after each PET session. Volumes of interest were manually delineated in the lungs on CT images, and voxel-by-voxel analysis was carried out on PET images to obtain the corresponding histograms. After the imaging sessions, lungs were harvested to conduct histological analysis. RESULTS: Ventilation studies in sham animals showed uniform distribution of [18F]SF6 and fast elimination of the radioactivity after discontinuation of the administration. For PBS- and LPS-treated rats, ventilation defects were observed on PET images in some animals, identified as regions with low presence of the radiolabelled gas. Hypoventilated areas co-localized with regions with higher x-ray attenuation than healthy lungs on the CT images, suggesting the presence of oedema and, in some cases, atelectasis. Histograms obtained from PET images showed quasi-Gaussian distributions for control animals, while PBS- and LPS-treated animals demonstrated the presence of hypoventilated voxels. Deviation of the histograms from Gaussian distribution correlated with histological score was obtained by ex vivo histological analysis. CONCLUSIONS: [18F]SF6 is an appropriate marker of regional lung ventilation and may find application in the early diagnose of acute lung disease.


Assuntos
Lipopolissacarídeos , Respiração Artificial , Ratos , Animais , Respiração Artificial/métodos , Ratos Sprague-Dawley , Tomografia por Emissão de Pósitrons/métodos , Pulmão , Modelos Animais
7.
J Intensive Care ; 10(1): 55, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567347

RESUMO

BACKGROUND: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. METHODS: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. RESULTS: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. CONCLUSIONS: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073.

8.
Genes Immun ; 23(6): 205-208, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36088493

RESUMO

IgG3 would play an important role in the immune adaptive response against SARS-CoV-2, and low plasma levels might increase the risk of COVID-19 severity and mortality. The IgG3 hinge sequence has a variable repeat of a 15 amino acid exon with common 4-repeats (M) and 3-repeats (S). This length IGHG3 polymorphism might affect the IgG3 effector functions. The short hinge length would reduce the IgG3 flexibility and impairs the neutralization and phagocytosis compared to larger length-isoforms. We genotyped the IGHG3 length polymorphism in patients with critical COVID-19 (N = 516; 107 death) and 152 moderate-severe but no-critical cases. Carriers of the S allele had an increased risk of critical ICU and mortality (p < 0.001, OR = 2.79, 95% CI = 1.66-4.65). This adverse effect might be explained by a less flexibility and reduced ability to induce phagocytosis or viral neutralization for the short length allele. We concluded that the IgG3 hinge length polymorphism could be a predictor of critical COVID-19 and the risk of death. This study was based on a limited number of patients from a single population, and requires validation in larger cohorts.


Assuntos
COVID-19 , Aminoácidos , COVID-19/genética , Éxons , Humanos , Imunoglobulina G/genética , SARS-CoV-2
9.
Mitochondrion ; 67: 1-5, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115538

RESUMO

As a key regulator of innate immunity, mitochondrial function is essential to maintain antiviral activities. Common mitochondrial DNA variants (haplogroups) have been associated with different physiological capacities and the nrisk of developing several diseases. Haplogroup H was associated with increased survival among sepsis patients, and lower risk of progression toward AIDS in HIV infected and lower manifestation of severe manifestation of herpex virus disease. We studied 316 Spanish with critical COVID-19, and found that the 7028C (haplogroup H) was protective among patients with early-onset disease (≤65 vs > 65 years, p = 0.01), while the ancestral 16223T was a risk factor for early-onset critical COVID-19 (OR = 3.36, 95 %CI = 1.49-7.54). Our work suggested that common mitochondrial variants may serve as predictors of COVID-19 severity. Additional studies to confirm this effect from other populations are of special interest.


Assuntos
COVID-19 , Humanos , Haplótipos , COVID-19/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Fatores de Risco
10.
Hum Immunol ; 83(8-9): 613-617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777990

RESUMO

The NF-κB signaling pathway is a key regulator of inflammation in the response to SARS-CoV-2 infection. This pathway has been implicated in the hyperinflammatory state that characterizes the severe forms of COVID-19. The genetic variation of the NF-κB components might thus explain the predisposition to critical outcomes of this viral disease. We aimed to study the role of the common NFKB1 rs28362491, NFKBIA rs696 and NFKBIZ rs3217713 variants in the risk of developing severe COVID-19 with ICU admission. A total of 470 Spanish patients requiring respiratory support in the ICU were studied (99 deceased and 371 survivors). Compared to healthy population controls (N = 300), the NFKBIA rs696 GG genotype was increased in the patients (p = 0.045; OR = 1.37). The NFKBIZ rs3217713 insertion homozygosis was associated with a significant risk of death (p = 0.02; OR = 1.76) and was also related to increased D-dimer values (p = 0.0078, OR = 1.96). This gene has been implicated in sepsis in mice and rats. Moreover, we found a trend toward lower expression of the NFKBIZ transcript in total blood from II patients. In conclusion, variants in the NF-κB genes might be associated with the risk of developing severe COVID-19, with a significant effect of the NFKBIZ gene on mortality. Our results were based on a limited number of patients and require validation in larger cohorts from other populations.


Assuntos
COVID-19 , NF-kappa B , Proteínas Adaptadoras de Transdução de Sinal , COVID-19/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Subunidade p50 de NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Transdução de Sinais
11.
J Med Virol ; 94(8): 3589-3595, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35355278

RESUMO

Furin is a protease that plays a key role in the infection cycle of SARS-CoV-2 by cleaving the viral proteins during the virus particle assembly. In addition, Furin regulates several physiological processes related to cardio-metabolic traits. DNA variants in the FURIN gene are candidates to regulate the risk of developing these traits as well as the susceptibility to severe COVID-19. We genotyped two functional FURIN variants (rs6224/rs4702) in 428 COVID-19 patients in the intensive care unit. The association with death (N = 106) and hypertension, diabetes, and hyperlipidaemia was statistically evaluated. The risk of death was associated with age, hypertension, and hypercholesterolemia. The two FURIN alleles linked to higher expression (rs6224 T and rs4702 A) were significantly increased in the death cases (odds ratio= 1.40 and 1.43). Homozygosis for the two high expression genotypes (rs6224 TT and rs4702 AA) and for the T-A haplotype was associated with an increased risk of hypercholesterolemia. In the multiple logistic regression both, hypercholesterolemia and the TT + AA genotype were significantly associated with death. In conclusion, besides its association with hypercholesterolemia, FURIN variants might be independent risk factors for the risk of death among COVID-19 patients.


Assuntos
COVID-19 , Hipercolesterolemia , Hipertensão , COVID-19/genética , Furina/genética , Furina/metabolismo , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
12.
Clin Immunol ; 236: 108954, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149195

RESUMO

Polymorphisms of Fcγ receptors have been associated with variable responses to infections. We determined the association of functional polymorphisms rs1801274 in the FCGR2A and rs396991 in the FCGR3A with COVID-19 severity. This study involved 453 patients with severe COVID-19, in which the FCGR2A rs1801274 G-allele (131-Arg) was significantly associated with death (p = 0.02, OR = 1.47). This effect was independent of age and increased IL6 and D-Dimer levels. This study suggests that the FCGR2A gene might be associated with the risk of death among COVID-19 patients. Our study has several limitations, mainly the limited number of patients and the inclusion of a single population. It is thus necessary to confirm this result in larger cohorts from different populations.


Assuntos
COVID-19 , Receptores de IgG , Alelos , COVID-19/genética , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Receptores de IgG/genética
13.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060899

RESUMO

Background: Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. We hypothesized that IFIH1 rs199076 variants would modulate host response and outcome after severe COVID-19. Methods: Patients admitted to an intensive care unit (ICU) with confirmed COVID-19 were prospectively studied and rs1990760 variants determined. Peripheral blood gene expression, cell populations, and immune mediators were measured. Peripheral blood mononuclear cells from healthy volunteers were exposed to an MDA5 agonist and dexamethasone ex-vivo, and changes in gene expression assessed. ICU discharge and hospital death were modeled using rs1990760 variants and dexamethasone as factors in this cohort and in-silico clinical trials. Results: About 227 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a lower expression of inflammation-related pathways, an anti-inflammatory cell profile, and lower concentrations of pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist showed an increase in IL6 expression after dexamethasone treatment. All patients with the TT variant not treated with steroids survived their ICU stay (hazard ratio [HR]: 2.49, 95% confidence interval [CI]: 1.29-4.79). Patients with a TT variant treated with dexamethasone showed an increased hospital mortality (HR: 2.19, 95% CI: 1.01-4.87) and serum IL-6. In-silico clinical trials supported these findings. Conclusions: COVID-19 patients with the IFIH1 rs1990760 TT variant show an attenuated inflammatory response and better outcomes. Dexamethasone may reverse this anti-inflammatory phenotype. Funding: Centro de Investigación Biomédica en Red (CB17/06/00021), Instituto de Salud Carlos III (PI19/00184 and PI20/01360), and Fundació La Marató de TV3 (413/C/2021).


Patients with severe COVID-19 often need mechanical ventilation to help them breathe and other types of intensive care. The outcome for many of these patients depends on how their immune system reacts to the infection. If the inflammatory response triggered by the immune system is too strong, this can cause further harm to the patient. One gene that plays an important role in inflammation is IFIH1 which encodes a protein that helps the body to recognize viruses. There are multiple versions of this gene which each produce a slightly different protein. It is possible that this variation impacts how the immune system responds to the virus that causes COVID-19. To investigate, Amado-Rodríguez, Salgado del Riego et al. analyzed the IFIH1 gene in 227 patients admitted to an intensive care unit in Spain for severe COVID-19 between March and December 2020. They found that patients with a specific version of the gene called TT experienced less inflammation and were more likely to survive the infection. Physicians typically treat patients with moderate to severe COVID-19 with corticosteroid drugs that reduce the inflammatory response. However, Amado-Rodríguez, Salgado del Riego et al. found that patients with the TT version of the IFIH1 gene were at greater risk of dying if they received corticosteroids. The team then applied the distribution of IFIH1 variants among different ethnic ancestries to data from a previous clinical trial, and simulated the effects of corticosteroid treatment. This 'mock' clinical trial supported their findings from the patient-derived data, which were also validated by laboratory experiments on immune cells from individuals with the TT gene. The work by Amado-Rodríguez, Salgado del Riego et al. suggests that while corticosteroids benefit some patients, they may cause harm to others. However, a real-world clinical trial is needed to determine whether patients with the TT version of the IFIH1 gene would do better without steroids.


Assuntos
COVID-19/genética , Inflamação/genética , Helicase IFIH1 Induzida por Interferon/genética , SARS-CoV-2/patogenicidade , Idoso , COVID-19/complicações , Estado Terminal , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Eur Respir J ; 60(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34887328

RESUMO

BACKGROUND: Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumours have not been explored. METHODS: To characterise the influence of mechanical ventilation on the behaviour of lung tumours, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechanodependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of nonventilated patients. RESULTS: Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in pro-protein convertase subtilisin/kexin type 9 (PCSK9) and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harbouring melanoma implants increased brain and kidney metastases 2 weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo. In patients, mechanical ventilation increased PCSK9 abundance in lung tumours and the incidence of metastasis, thus decreasing survival. CONCLUSIONS: Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.


Assuntos
Adenocarcinoma , Colesterol , Neoplasias Pulmonares , Melanoma , Pró-Proteína Convertase 9 , Respiração Artificial , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Colesterol/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Respiração Artificial/efeitos adversos
16.
Curr Res Virol Sci ; 2: 100016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870250

RESUMO

The interferon induced transmembrane-protein 3 (IFITM3) plays an important role in the defence against viral infection. IFITM3 gene variants have been linked to differences in expression and associated with the risk of severe influenza by some authors. More recently, these variants have been associated with the risk of COVID-19 after SARS-CoV-2 infection. We determined the effect of two common IFITM3 polymorphisms (rs34481144 â€‹C/T and rs12252 A/G) on the risk of hospitalization due to COVID-19 by comparing 484 patients (152 required support in thr intensive care unit, ICU) and 182 age and sex matched controls (no disease symptoms). We found significantly higher frequencies of rs34481144 â€‹T and rs12252 â€‹G carriers among the patients (OR â€‹= â€‹2.02 and OR â€‹= â€‹1.51, respectively). None of the two variants were associated with ICU-admission or death. We found a significantly higher frequency of rs34481144 CC â€‹+ â€‹rs12252 AA genotype carriers among the controls, suggesting a protective effect (p = 0.001, OR = 0.56, 95%CI = 0.40-0.80). Moreover, haplotype rs34481144 â€‹C - rs12252 A was significantly increased in the controls (p â€‹= â€‹0.008, OR â€‹= â€‹0.71, 95%CI â€‹= â€‹0.55-0.91). Our results showed a significant effect of the IFITM3 variants in the risk for hospitalization after SARS-CoV-2 infection.

17.
Ann Intensive Care ; 11(1): 132, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34453620

RESUMO

BACKGROUND: Cardiogenic pulmonary oedema (CPE) may contribute to ventilator-associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra-low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno-arterial extracorporeal membrane oxygenation (V-A ECMO) on lung inflammation compared to conventional ventilation. METHODS: A single-centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a tertiary university hospital. Seventeen adults requiring V-A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinflammatory mediators in bronchoalveolar lavage fluid (BALF) between both ventilatory strategies. RESULTS: Ventilation with 3 ml/kg PBW yielded lower driving pressures and end-expiratory lung volumes. Overall, there were no differences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL-6 showed statistically significant lower levels of IL-6 and IL-8 during ultra-low tidal volume ventilation. This reduction was significantly proportional to the decrease in driving pressure. In contrast, those with lower IL-6 baseline levels showed a significant increase in these biomarkers. CONCLUSIONS: Ultra-low tidal volume ventilation in patients with CPE and V-A ECMO may attenuate inflammation in selected cases. VALI may be driven by an interaction between the individual proinflammatory profile and the mechanical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifier NCT03041428, Registration date: 2nd February 2017).

18.
Int Immunopharmacol ; 98: 107825, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34116286

RESUMO

The chemokine receptor CCR5 has been implicated in COVID-19. CCR5 and its ligands are overexpressed in patients. The pharmacological targeting of CCR5 would improve the COVID-19 severity. We sought to investigate the role of the CCR5-Δ32 variant (rs333) in COVID-19. The CCR5-Δ32 was genotyped in 801 patients (353 in the intensive care unit, ICU) and 660 healthy controls, and the deletion was significantly less frequent in hospitalysed COVID-19 than in healthy controls (p = 0.01, OR = 0.66, 95%CI = 0.49-0.88). Of note, we did not find homozygotes among the patients, compared to 1% of the controls. The CCR5 transcript was measured in leukocytes from 85 patients and 40 controls. We found a significantly higher expression of the CCR5 transcript among the patients, with significant difference when comparing the non-deletion carriers (controls = 35; patients = 81; p = 0.01). ICU-patients showed non-significantly higher expression than no-ICU cases. Our study points to CCR5 as a genetic marker for COVID-19. The pharmacological targeting of CCR5 should be a promising treatment for COVID-19.


Assuntos
COVID-19/genética , Variação Genética , Receptores CCR5/genética , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Admissão do Paciente , Fenótipo , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença
19.
Transl Res ; 233: 104-116, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33515780

RESUMO

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ácidos/administração & dosagem , Ácidos/toxicidade , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais , Estresse Mecânico , Pesquisa Translacional Biomédica , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Mech Ageing Dev ; 193: 111410, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249191

RESUMO

A wide range of insults can trigger acute injury in the lungs, which eventually may lead to respiratory failure and death of patients. Current treatment relies mainly on supportive measures and mechanical ventilation. Even so, survivors frequently develop important sequels that compromise quality of life. In the search for new approaches to prevent and treat acute lung injury, many investigations have focused on molecular and cellular pathways which could exert a pathogenic role in this disease. Herein, we review recent findings in the literature suggesting that cellular senescence could be involved in lung injury and discuss the potential use of senotherapies to prevent disease progression.


Assuntos
Lesão Pulmonar Aguda , Senescência Celular/fisiologia , Pulmão , Insuficiência Respiratória/prevenção & controle , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Lesão Pulmonar Aguda/terapia , Progressão da Doença , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/mortalidade , Medicamentos para o Sistema Respiratório/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA