Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 164: 205-215, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991049

RESUMO

Endothelial to mesenchymal transition (EndMT), where endothelial cells acquire mesenchymal characteristics has been implicated in several cardiopulmonary, vascular and fibrotic diseases. The most commonly studied molecular mechanisms involved in EndMT include TGFß, Notch, interleukin, and interferon-γ signaling. As of today, the contributions of Akt1, an important mediator of TGFß signaling and a key regulator of endothelial barrier function to EndMT remains unclear. By using the ShRNA based gene silencing approach and endothelial-specific inducible Akt1 knockdown (ECKOAkt1) mice, we studied the role of Akt1 in EndMT in vitro and pathological vascular remodeling in vivo. Stable, Akt1 silenced (ShAkt1) human microvascular endothelial cells (HMECs) indicated increased expression of mesenchymal markers such as N-cadherin and α-SMA, phosphorylation of Smad2/3, cellular stress via activation of p38 MAP Kinase and the loss of endothelial nitric oxide synthase (eNOS) accompanied by a change in the morphology of HMECs in vitro and co-localization of endothelial and mesenchymal markers promoting EndMT in vivo. EndMT as a result of Akt1 loss was associated with increased expression of TGFß2, a potent inducer of EndMT and mesenchymal transcription factors Snail1, and FoxC2. We observed that hypoxia-induced lung vascular remodeling is exacerbated in ECKOAkt1 mice, which was reversed by pharmacological inhibition of ß-catenin. Thus, we provide novel insights into the role of Akt1-mediated ß-catenin signaling in EndMT and pathological vascular remodeling, and present ß-catenin as a potential target for therapy for various cardiopulmonary diseases involving vascular remodeling.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Vascular/fisiologia , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pirróis/farmacologia , Remodelação Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA