Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 17563-17576, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645369

RESUMO

Transition-metal oxide has been identified as an auspicious material for supercapacitors due to its exceptional capacity. The inadequate electrochemical characteristics, such as prolonged cycle stability, can be ascribed to factors, such as low electrical conductivity, sluggish reaction kinetics, and a deficiency of active sites. The transition-metal oxides derived from the MOF materials offer a larger surface area with enriched active sites and a faster reaction rate along with good electrical conductivity. The manganese (Mn)-based metal-organic framework (MOF)-derived materials were produced using the pyrolysis method. Zeolitic imidazolate frameworks (ZIF-67) were fabricated in water at ambient temperature with the aid of triethylamine. Multiple techniques were used to examine the characteristics of the fabricated electrode materials. The influence of the electrolyte on the electrochemical activity of the Mn3O4@N-doped C electrode materials was determined in KOH, NaOH, and LiOH. For manufacturing of "Mn3O4@N-doped C", ZIF-67 was used as a precursor. The capacitive performance of the Mn3O4@N-doped C electrode increased as a result of nitrogen-doped carbon; after 5000th cycles, the electrode retained an excellent rate capability and a high specific capacitance (Cs) of 980 F g-1 at 1 A g-1 under 2.0 KOH electrolyte in a three electrode system. The carbonized manganese oxide displays also had a high Cs of 686 F g-1 in two electrode systems in 2.0 M KOH. Materials made from MOFs show promise as capacitive materials for applications in energy conversion storage owing to their straightforward synthesis and strong electrochemical performance.

2.
RSC Adv ; 13(19): 12973-12981, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37123997

RESUMO

Structural, electronic, elastic and magnetic properties of CeCu3-x Mn x V4O12 (x = 0, 1, 2 and 3) system have been carried out through DFT using GGA, GGA+U and HF potential. The investigation of structural optimization reveals that lattice parameters of the understudy system is reliable with the reported results and are increasing with the Mn substitution due to their greater atomic radii as compare to Cu atom. Both the cohesive energy and the enthalpy show that CeCu3V4O12 is the most thermodynamically stable among these compounds. When Mn is replaced by Cu in these compounds, not only it become semi-metals, but the host compound also changes from non-magnetic to anti-ferromagnetic and their electrical resistance provides further credence to their electronic behavior. Mechanical stability, anisotropy, and ductility are all demonstrated through the elastic characteristics of these compounds. Due to anti-ferromagnetic ductile nature of the Mn base compounds, it is expected that the compounds in the system may use for spintronic application and in magnetic cloaking devices.

3.
RSC Adv ; 13(13): 8736-8742, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936821

RESUMO

It is common knowledge that the O2 evolution reaction (OER) is a crucial half-reaction in the electrolysis of water. However, it is currently difficult to create inexpensive OER electrode materials in a way that is efficient, simple, and environmentally friendly. In this research, metal oxy-hydroxides with numerous oxygen defects (M-OOHv) are created at surface of Cu foam (CF) using a unique, straightforward electro-oxidation reconstitution (ER) process. Different spectroscopic and microscopy methods are used to analyse the electrode characteristics of Al2Cu-MOF@M-OOHv-ER/CF; electrochemical measurements display a lower overpotential (η) of 366 mV @ 10 mA cm-2 and a Tafel slope of 95.2 mV dec-1 in 1.0 M KOH. X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Raman studies confirm the phase transition of the metal-organic framework (MOF) to the M-OOH, which acts as the active site to boost the OER activity. Through spectroscopic and microscopic investigations, it is determined that the efficiency of bimetallic electrode materials and oxygen vacancies in the M-OOHv have an impact on the electron power density. The manufactured electrode material additionally showed good durability for 50 hours. As a result, the newly developed Al2Cu-MOF@M-OOHv-ER/CF nanomaterial has greater potential for both electrolysis of water and other energy storage equipment.

4.
Materials (Basel) ; 15(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431495

RESUMO

The structural, electrical, and magneto-elastic properties of lanthanide base nitride (Ln = Dy-Lu) anti-perovskites were investigated using density functional theory (DFT). The reported structural outcomes are consistent with the experiment and decrease from Dy to Lu due to the decrease ofatomic radii of Ln atoms. According to the electronic band profile, the metallic characteristics of these compounds are due to the crossing over of Ln-f states at the Fermi level and are also supported by electrical resistivity. The resistivity of these compounds at room temperature demonstrates that they are good conductors. Their mechanical stability, anisotropic, load-bearing, and malleable nature are demonstrated by their elastic properties. Due to their metallic and load-bearing nature, in addition to their ductility, these materials are suitable as active biomaterials, especially when significant acting loads are anticipated, such as those experienced by such heavily loaded implants as hip and knee endo-prostheses, plates, screws, nails, dental implants, etc. In thesecases, appropriate bending fatigue strength is required in structural materials for skeletal reconstruction. Magnetic properties show that all compounds are G-type anti-ferromagnetic, with the Neel temperatures ranging from 24 to 48 K, except Lu3Nin, which is non-magnetic. Due to their anti-ferromagnetic structure, magnetic probes cannot read data contained in anti-ferromagnetic moments, therefore, data will be unchanged by disrupted magnetic field. As a result, these compounds can be the best candidates for magnetic cloaking devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA