RESUMO
Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.
Assuntos
Proteínas do Tecido Nervoso , Plasticidade Neuronal , Proteoma , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos , Fosforilação , Proteoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Masculino , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Aprendizagem/fisiologia , Aprendizagem da Esquiva/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sinapses/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Espinhas Dendríticas/metabolismoRESUMO
Protein phosphorylation, a key regulator of cellular processes, plays a central role in brain function and is implicated in neurological disorders. Information on protein phosphorylation is expected to be a clue for understanding various neuropsychiatric disorders and developing therapeutic strategies. Nonetheless, existing databases lack a specific focus on phosphorylation events in the brain, which are crucial for investigating the downstream pathway regulated by neurotransmitters. To overcome the gap, we have developed a web-based database named "Kinase-Associated Neural PHOspho-Signaling (KANPHOS)." This paper presents the design concept, detailed features, and a series of improvements for KANPHOS. KANPHOS is designed to support data-driven research by fulfilling three key objectives: (1) enabling the search for protein kinases and their substrates related to extracellular signals or diseases; (2) facilitating a consolidated search for information encompassing phosphorylated substrate genes, proteins, mutant mice, diseases, and more; and (3) offering integrated functionalities to support pathway and network analysis. KANPHOS is also equipped with API functionality to interact with external databases and analysis tools, enhancing its utility in data-driven investigations. Those key features represent a critical step toward unraveling the complex landscape of protein phosphorylation in the brain, with implications for elucidating the molecular mechanisms underlying neurological disorders. KANPHOS is freely accessible to all researchers at https://kanphos.jp.
RESUMO
The Small GTPase Rac1 is critical for various fundamental cellular processes, including cognitive functions. The cyclical activation and inactivation of Rac1, mediated by Rac guanine nucleotide exchange factors (RacGEFs) and Rac GTPase-activating proteins (RacGAPs), respectively, are essential for activating intracellular signaling pathways and controlling cellular processes. We have recently shown that the Alzheimer's disease (AD) therapeutic drug donepezil activates the Rac1-PAK pathway in the nucleus accumbens (NAc) for enhanced aversive learning. Also, PAK activation itself in the NAc enhances aversive learning. As aversive learning allows short-term preliminary AD drug screening, here we tested whether sustained Rac1 activation by RacGAP inhibition can be used as an AD therapeutic strategy for improving AD-learning deficits based on aversive learning. We found that the RacGAP domain of breakpoint cluster region protein (Bcr) (Bcr-GAP) efficiently inhibited Rac1 activity in a membrane ruffling assay. We also found that, in striatal/accumbal primary neurons, Bcr knockdown by microRNA mimic-expressing adeno-associated virus (AAV-miRNA mimic) activated Rac1-PAK signaling, while Bcr-GAP-expressing AAV inactivated it. Furthermore, conditional knockdown of Bcr in the NAc of wild-type adult mice enhanced aversive learning, while Bcr-GAP expression in the NAc inhibited it. The findings indicate that Rac1 activation by RacGAP inhibition enhances aversive learning, implying the AD therapeutic potential of Rac1 signaling.
Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Transdução de SinaisRESUMO
Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.
Assuntos
Corpo Estriado , Neostriado , Animais , Camundongos , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/farmacologia , Corpo Estriado/metabolismo , Neostriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Transdução de Sinais , Fosforilação , Receptores de Dopamina D1/metabolismoRESUMO
Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.
Assuntos
Dopamina , Canal de Potássio KCNQ2 , Transtornos Mentais , Proteínas do Tecido Nervoso , Animais , Dopamina/metabolismo , Canal de Potássio KCNQ2/metabolismo , Transtornos Mentais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo , RecompensaRESUMO
The structural plasticity of dendritic spines plays a critical role in NMDA-induced long-term potentiation (LTP) in the brain. The small GTPases RhoA and Ras are considered key regulators of spine morphology and enlargement. However, the regulatory interaction between RhoA and Ras underlying NMDA-induced spine enlargement is largely unknown. In this study, we found that Rho-kinase/ROCK, an effector of RhoA, phosphorylated SynGAP1 (a synaptic Ras-GTPase activating protein) at Ser842 and increased its interaction with 14-3-3ζ, thereby activating Ras-ERK signaling in a reconstitution system in HeLa cells. We also found that the stimulation of NMDA receptor by glycine treatment for LTP induction stimulated SynGAP1 phosphorylation, Ras-ERK activation, spine enlargement and SynGAP1 delocalization from the spines in striatal neurons, and these effects were prevented by Rho-kinase inhibition. Rho-kinase-mediated phosphorylation of SynGAP1 appeared to increase its dissociation from PSD95, a postsynaptic scaffolding protein located at postsynaptic density, by forming a complex with 14-3-3ζ. These results suggest that Rho-kinase phosphorylates SynGAP1 at Ser842, thereby activating the Ras-ERK pathway for NMDA-induced morphological changes in dendritic spines.
Assuntos
Espinhas Dendríticas , Potenciação de Longa Duração , Proteínas Ativadoras de ras GTPase , Proteínas 14-3-3/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , N-Metilaspartato/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteína rhoA de Ligação ao GTPRESUMO
Protein kinases exert physiological functions through phosphorylating their specific substrates; however, the mode of kinase-substrate recognition is not fully understood. Rho-kinase is a Ser/Thr protein kinase that regulates cytoskeletal reorganization through phosphorylating myosin light chain (MLC) and the myosin phosphatase targeting subunit 1 (MYPT1) of MLC phosphatase (MLCP) and is involved in various diseases, due to its aberrant cellular contraction, morphology, and movement. Despite the importance of the prediction and identification of substrates and phosphorylation sites, understanding of the precise regularity in phosphorylation preference of Rho-kinase remains far from satisfactory. Here we analyzed the Rho-kinase-MYPT1 interaction, to understand the mode of Rho-kinase substrate recognition and found that the three short regions of MYPT1 close to phosphorylation sites (referred to as docking motifs (DMs); DM1 (DLQEAEKTIGRS), DM2 (KSQPKSIRERRRPR), and DM3 (RKARSRQAR)) are important for interactions with Rho-kinase. The phosphorylation levels of MYPT1 without DMs were reduced, and the effects were limited to the neighboring phosphorylation sites. We further demonstrated that the combination of pseudosubstrate (PS) and DM of MYPT1 (PS1 + DM3 and PS2 + DM2) serves as a potent inhibitor of Rho-kinase. The present information will be useful in identifying new substrates and developing selective Rho-kinase inhibitors.
Assuntos
Cadeias Leves de Miosina , Quinases Associadas a rho , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Quinases Associadas a rho/metabolismoRESUMO
The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.
Assuntos
Aprendizagem da Esquiva/fisiologia , Canal de Potássio KCNQ2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Proteína Quinase C/metabolismo , Receptores Muscarínicos/fisiologia , Animais , Carbacol/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Canal de Potássio KCNQ2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptor Muscarínico M2/efeitos dos fármacosRESUMO
The N-methyl-D-aspartate receptor (NMDAR)-mediated structural plasticity of dendritic spines plays an important role in synaptic transmission in the brain during learning and memory formation. The Rho family of small GTPase RhoA and its downstream effector Rho-kinase/ROCK are considered as one of the major regulators of synaptic plasticity and dendritic spine formation, including long-term potentiation (LTP). However, the mechanism by which Rho-kinase regulates synaptic plasticity is not yet fully understood. Here, we found that Rho-kinase directly phosphorylated discs large MAGUK scaffold protein 2 (DLG2/PSD-93), a major postsynaptic scaffold protein that connects postsynaptic proteins with NMDARs; an ionotropic glutamate receptor, which plays a critical role in synaptic plasticity. Stimulation of striatal slices with an NMDAR agonist induced Rho-kinase-mediated phosphorylation of PSD-93 at Thr612. We also identified PSD-93-interacting proteins, including DLG4 (PSD-95), NMDARs, synaptic Ras GTPase-activating protein 1 (SynGAP1), ADAM metallopeptidase domain 22 (ADAM22), and leucine-rich glioma-inactivated 1 (LGI1), by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Rho-kinase increased the binding of PSD-93 to PSD-95 and NMDARs. Furthermore, we found that chemical-LTP induced by glycine, which activates NMDARs, increased PSD-93 phosphorylation at Thr612, spine size, and PSD-93 colocalization with PSD-95, while these events were blocked by pretreatment with a Rho-kinase inhibitor. These results indicate that Rho-kinase phosphorylates PSD-93 downstream of NMDARs, and suggest that Rho-kinase mediated phosphorylation of PSD-93 increases the association with PSD-95 and NMDARs to regulate structural synaptic plasticity.
Assuntos
Receptores de N-Metil-D-Aspartato , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Hipocampo/metabolismoRESUMO
Dopamine type 1 receptor (D1R) signaling activates protein kinase A (PKA), which then activates mitogen-activated protein kinase (MAPK) through Rap1, in striatal medium spiny neurons (MSNs). MAPK plays a pivotal role in reward-related behavior through the activation of certain transcription factors. How D1R signaling regulates behavior through transcription factors remains largely unknown. CREB-binding protein (CBP) promotes transcription through hundreds of different transcription factors and is also important for reward-related behavior. To identify transcription factors regulated by dopamine signaling in MSNs, we performed a phosphoproteomic analysis using affinity beads coated with CBP. We obtained approximately 40 novel candidate proteins in the striatum of the C57BL/6 mouse brain after cocaine administration. Among them, the megakaryoblastic leukemia-2 (MKL2) protein, a transcriptional coactivator of serum response factor (SRF), was our focus. We found that the interaction between CBP and MKL2 was increased by cocaine administration. Additionally, MKL2, CBP and SRF formed a ternary complex in vivo. The C-terminal domain of MKL2 interacted with CBP-KIX and was phosphorylated by MAPK in COS7 cells. The activation of PKA-MAPK signaling induced the nuclear localization of MKL2 and increased SRF-dependent transcriptional activity in neurons. These results demonstrate that dopamine signaling regulates the interaction of MKL2 with CBP in a phosphorylation-dependent manner and thereby controls SRF-dependent gene expression. Cover Image for this issue: https://doi.org/10.1111/jnc.15067.
Assuntos
Corpo Estriado/metabolismo , Espaço Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Animais , Células COS , Chlorocebus aethiops , Cocaína/farmacologia , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Feminino , Células HEK293 , Humanos , Espaço Intracelular/química , Espaço Intracelular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/análise , Técnicas de Cultura de Órgãos , Gravidez , Fator de Resposta Sérica/análise , Fatores de Transcrição/análise , Ativação Transcricional/efeitos dos fármacos , XenopusRESUMO
Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The "KANPHOS" (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.
Assuntos
Encéfalo/metabolismo , Bases de Dados de Proteínas , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Canais de Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosforilação , Receptor A2A de Adenosina/metabolismo , Especificidade por SubstratoRESUMO
Schizophrenia (SCZ) is known to be a heritable disorder; however, its multifactorial nature has significantly hampered attempts to establish its pathogenesis. Therefore, in this study, we performed genome-wide copy-number variation (CNV) analysis of 2940 patients with SCZ and 2402 control subjects and identified a statistically significant association between SCZ and exonic CNVs in the ARHGAP10 gene. ARHGAP10 encodes a member of the RhoGAP superfamily of proteins that is involved in small GTPase signaling. This signaling pathway is one of the SCZ-associated pathways and may contribute to neural development and function. However, the ARHGAP10 gene is often confused with ARHGAP21, thus, the significance of ARHGAP10 in the molecular pathology of SCZ, including the expression profile of the ARHGAP10 protein, remains poorly understood. To address this issue, we focused on one patient identified to have both an exonic deletion and a missense variant (p.S490P) in ARHGAP10. The missense variant was found to be located in the RhoGAP domain and was determined to be relevant to the association between ARHGAP10 and the active form of RhoA. We evaluated ARHGAP10 protein expression in the brains of reporter mice and generated a mouse model to mimic the patient case. The model exhibited abnormal emotional behaviors, along with reduced spine density in the medial prefrontal cortex (mPFC). In addition, primary cultured neurons prepared from the mouse model brain exhibited immature neurites in vitro. Furthermore, we established induced pluripotent stem cells (iPSCs) from this patient, and differentiated them into tyrosine hydroxylase (TH)-positive neurons in order to analyze their morphological phenotypes. TH-positive neurons differentiated from the patient-derived iPSCs exhibited severe defects in both neurite length and branch number; these defects were restored by the addition of the Rho-kinase inhibitor, Y-27632. Collectively, our findings suggest that rare ARHGAP10 variants may be genetically and biologically associated with SCZ and indicate that Rho signaling represents a promising drug discovery target for SCZ treatment.
Assuntos
Esquizofrenia , Animais , Variações do Número de Cópias de DNA , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Esquizofrenia/genética , Transdução de Sinais , Proteína rhoA de Ligação ao GTPRESUMO
In Drosophila, dopamine signaling to the mushroom body intrinsic neurons, Kenyon cells (KCs), is critical to stabilize olfactory memory. Little is known about the downstream intracellular molecular signaling underlying memory stabilization. Here we address this question in the context of sugar-rewarded olfactory long-term memory (LTM). We show that associative training increases the phosphorylation of MAPK in KCs, via Dop1R2 signaling. Consistently, the attenuation of Dop1R2, Raf, or MAPK expression in KCs selectively impairs LTM, but not short-term memory. Moreover, we show that the LTM deficit caused by the knockdown of Dop1R2 can be rescued by expressing active Raf in KCs. Thus, the Dop1R2/Raf/MAPK pathway is a pivotal downstream effector of dopamine signaling for stabilizing appetitive olfactory memory.SIGNIFICANCE STATEMENT Dopaminergic input to the Kenyon cells (KCs) is pivotal to stabilize memory in Drosophila This process is mediated by dopamine receptors like Dop1R2. Nevertheless, little is known for its underlying molecular mechanism. Here we show that the Raf/MAPK pathway is specifically engaged in appetitive long-term memory in KCs. With combined biochemical and behavioral experiments, we reveal that activation of the Raf/MAPK pathway is regulated through Dop1R2, shedding light on how dopamine modulates intracellular signaling for memory stabilization.
Assuntos
Comportamento Apetitivo/fisiologia , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Masculino , Corpos Pedunculados/fisiologia , Quinases raf/metabolismoRESUMO
Phosphorylation is a major post-translational modification that plays a central role in signaling pathways. Protein kinases phosphorylate substrates (phosphoproteins) by adding phosphate at Ser/Thr or Tyr residues (phosphosites). A large amount of data identifying and describing phosphosites in phosphoproteins has been reported but the specificity of phosphorylation is not fully resolved. In this report, data of kinase-substrate pairs identified by the Kinase-Interacting Substrate Screening (KISS) method were used to analyze phosphosites in intrinsically disordered regions (IDRs) of intrinsically disordered proteins. We compared phosphorylated and nonphosphorylated IDRs and found that the phosphorylated IDRs were significantly longer than nonphosphorylated IDRs. The phosphorylated IDR is often the longest IDR (71%) in a phosphoprotein when only a single phosphosite exists in the IDR, and when the phosphoprotein has multiple phosphosites in an IDR(s), the phosphosites are primarily localized in a single IDR (78%) and this IDR is usually the longest one (81%). We constructed a stochastic model of phosphorylation to estimate the effect of IDR length. The model that accounted for IDR length produced more realistic results when compared with a model that excluded the IDR length. We propose that the IDR length is a significant determinant for locating kinase phosphorylation sites in phosphoproteins.
Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Quinases/química , Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Processos EstocásticosRESUMO
Dopamine (DA) activates mitogen-activated protein kinase (MAPK) via protein kinase A (PKA)/Rap1 in medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R) in the nucleus accumbens (NAc), thereby regulating reward-related behavior. However, how MAPK regulates reward-related learning and memory through gene expression is poorly understood. Here, to identify the relevant transcriptional factors, we perform proteomic analysis using affinity beads coated with cyclic AMP response element binding protein (CREB)-binding protein (CBP), a transcriptional coactivator involved in reward-related behavior. We identify more than 400 CBP-interacting proteins, including Neuronal Per Arnt Sim domain protein 4 (Npas4). We find that MAPK phosphorylates Npas4 downstream of PKA, increasing the Npas4-CBP interaction and the transcriptional activity of Npas4 at the brain-derived neurotrophic factor (BDNF) promoter. The deletion of Npas4 in D1R-expressing MSNs impairs cocaine-induced place preference, which is rescued by Npas4-wild-type (WT), but not by a phospho-deficient Npas4 mutant. These observations suggest that MAPK phosphorylates Npas4 in D1R-MSNs and increases transcriptional activity to enhance reward-related learning and memory.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Expressão Gênica/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Cocaína/farmacologia , Dopamina/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteômica/métodos , Receptores de Dopamina D1/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologiaRESUMO
BACKGROUND: Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS: To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS: We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS: Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.
Assuntos
Actinas/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Proteína Quinase C/metabolismo , Transativadores/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Mutations in the microtubule-associated protein tau (MAPT) gene are known to cause familial frontotemporal dementia (FTD). The R406W tau mutation is a unique missense mutation whose patients have been reported to exhibit Alzheimer's disease (AD)-like phenotypes rather than the more typical FTD phenotypes. In this study, we established patient-derived induced pluripotent stem cell (iPSC) models to investigate the disease pathology induced by the R406W mutation. We generated iPSCs from patients and established isogenic lines using CRISPR/Cas9. The iPSCs were induced into cerebral organoids, which were dissociated into cortical neurons with high purity. In this neuronal culture, the mutant tau protein exhibited reduced phosphorylation levels and was increasingly fragmented by calpain. Furthermore, the mutant tau protein was mislocalized and the axons of the patient-derived neurons displayed morphological and functional abnormalities, which were rescued by microtubule stabilization. The findings of our study provide mechanistic insight into tau pathology and a potential for therapeutic intervention.
Assuntos
Alelos , Substituição de Aminoácidos , Demência Frontotemporal/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Proteínas tau/genética , Calpaína/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Proteínas tau/metabolismoRESUMO
Protein phosphorylation plays a critical role in the regulation of cellular function. Information on protein phosphorylation and the responsible kinases is important for understanding intracellular signaling. A method for in vivo screening of kinase substrates named KIOSS (kinase-oriented substrate screening) has been developed. This protocol provides a method that utilizes phosphoprotein-binding modules such as 14-3-3 protein, the pin1-WW domain, and the chek2-FHA domain as biological filters to successfully enrich phosphorylated proteins related to intracellular signaling rather than housekeeping and/or structural proteins. More than 1000 substrate candidates for PKA, PKC, MAPK, and Rho-kinase in HeLa cells, as well as phosphorylation downstream of D1R, NMDAR, adenosine A2a receptor, PKA, PKC, MAPK, and Rho-kinase in mouse brain slice cultures have been identified by this method. An online database named KANPHOS (Kinase-Associated Neural Phospho-Signaling) provides the phosphorylation signals identified by these studies, as well as those previously reported in the literature. © 2019 by John Wiley & Sons, Inc.
Assuntos
Proteínas Quinases/metabolismo , Especificidade por Substrato , Animais , Células HeLa , Humanos , Camundongos , Fosforilação , Células Tumorais CultivadasRESUMO
Accumulating information on eukaryotic protein phosphorylation implies a large and complicated phospho-signalling network in various cellular processes. Although a large number of protein phosphorylation sites have been detected, their physiological consequences and the linkage between each phosphorylation site and the responsible protein kinase remain largely unexplored. To understand kinase-oriented phospho-signalling pathways, we have developed novel substrate screening technologies. In this review, we described the in vitro and in vivo screening methods named kinase-interacting substrate screening analysis and kinase-oriented substrate screening analysis, respectively.
Assuntos
Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteômica , Transdução de Sinais , Animais , Humanos , Fosfoproteínas/genética , Proteínas Quinases/genéticaRESUMO
Medium spiny neurons (MSNs) expressing dopamine D1 receptor (D1R) or D2 receptor (D2R) are major components of the striatum. Stimulation of D1R activates protein kinase A (PKA) through Golf to increase neuronal activity, while D2R stimulation inhibits PKA through Gi. Adenosine A2A receptor (A2AR) coupled to Golf is highly expressed in D2R-MSNs within the striatum. However, how dopamine and adenosine co-operatively regulate PKA activity remains largely unknown. Here, we measured Rap1gap serine 563 phosphorylation to monitor PKA activity and examined dopamine and adenosine signals in MSNs. We found that a D1R agonist increased Rap1gap phosphorylation in striatal slices and in D1R-MSNs in vivo. A2AR agonist CGS21680 increased Rap1gap phosphorylation, and pretreatment with the D2R agonist quinpirole blocked this effect in striatal slices. D2R antagonist eticlopride increased Rap1gap phosphorylation in D2R-MSNs in vivo, and the effect of eticlopride was blocked by the pretreatment with the A2AR antagonist SCH58261. These results suggest that adenosine positively regulates PKA in D2R-MSNs through A2AR, while this effect is blocked by basal dopamine in vivo. Incorporating computational model analysis, we propose that the shift from D1R-MSNs to D2R-MSNs or vice versa appears to depend predominantly on a change in dopamine concentration.